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Preface

This text was written specifically for health information management students enrolled in
baccalaureate degree programs and for practicing health information management profes-
sionals. This text focuses on applying statistical techniques to problems in health care. Be-
cause the focus here is on application, it is assumed that the student has had a previous
course in probability theory and the normal distribution. This text is set up so that students
can either use the Jones and Bartlett Publishers website that supports this book or input the
data for each problem using their own statistical software. It is not the intent of this book to
teach the student how to use SPSS, Microsoft Excel, or any other type of statistical package
or electronic spreadsheet. These programs are included in this text as examples only; | am
not endorsing any of these products. My goal in writing this book was to introduce students
and professionals to how statistical techniques can be used to describe and make inferences
from health care data. There are many statistical books available on the market, but none is
directed specifically to the health information management profession. Also, because there
are other texts that introduce the student to traditional hospital statistics such as average
length of stay and total inpatient service days, they are not covered in this text.
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CHAPTER 1

Commonly Used Freqguency
Measures in Health Care

KEY TERMS  Variable
Frequency distribution

Postneonatal mortality rate
Infant mortality rate

Rate Morbidity rates

Ratio Incidence rate
Proportion Prevalence rate
Dichotomous variables Point prevalence rate
Confounding factor Risk ratios
Confounding variable Relative risk
Mortality rates Odds ratio

Crude death rate Attributable risk

Age-specific death rate Kaplan Meier method
(ASDR) Kaplan-Meier survival

Age-adjusted death rate analysis

Standard mortality ratio (SMR)

Race-specific death rate

Sex-specific death rate

Cause-specific death rate

Case fatality rate

Proportionate mortality ratio (PMR)

Maternal mortality rate

Neonatal mortality rate

LEARNING At the conclusion of this chapter, you should be able to:

OBJECTIVES 1. Define key terms.

2. Calculate measures of morbidity, mortality, and risk of disease for
health care facilities and communities.
3. ldentify variables that affect morbidity and mortality rates over time.
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4. Adjust measures of morbidity and mortality by both the direct and in-
direct methods of standardization.

5. After adjustment, compare health care facility mortality/morbidity
rates with community, state, and/or national rates.

6. Calculate risk of disease between groups.

7. Conduct survival analysis for tumor registries and clinical trials.

It is often said that hospitals and other types of health care facilities are data rich but infor-
mation poor. There are many types of databases within the facility, many contained within
the organization’ information warehouse. Information warehouses contain both clinical and
financial information. It is the job of the health information management professional to
turn the data contained in these databases into information that can be used by physicians,
administrators, and other interested parties. The health information management profes-
sional can become an invaluable member of the health care team by providing data that are
presented in a meaningful way and by presenting data that have been analyzed to serve a
specific medical or clinical need. Some typical questions might be:

« What are the top 25 medical and top 10 surgical diagnosis-related groups (DRGs) for
inpatient discharges from our facility?

» Which medical/surgical services admit the most patients?

« Is the average length of stay (ALOS) for these DRGs significantly different from the
national ALOS for these DRGs?

e How do our charges compare with national charges? How does our reimbursement
compare with our costs?

» What geographical area does the health care facility serve?

e How many patients were admitted to the facility by payer? What is the number of in-
patient service days by payer? What are the average charges by payer?

» How do lengths of stay (LOSs) compare by physician?

e How many patients acquired nosocomial infections?

In the course of this text we will answer these questions. We will learn how to use de-
scriptive statistics to describe patient populations, how to analyze clinical data for signifi-
cant differences and relationships, and how to present data in graphic form. Our goal is to
collect, analyze, and interpret clinical information for both clinical and administrative health
care decision makers. We will begin our discussion of clinical data analysis by reviewing
morbidity and mortality measures that are often used to describe patient and community
populations.

INTRODUCTION TO FREQUENCY DISTRIBUTIONS

In health care, we deal with vast quantities of clinical data. Since it is very difficult to look
at data in raw form, data are summarized into frequency distributions. A frequency distri-
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bution shows the values that a variable can take and the number of observations associated
with each value. A variable is a characteristic or property that may take on different values.
Height, weight, sex, and third-party payer are examples of variables.

For example, suppose we are studying the variable patient LOS in the pediatric unit. To
construct a frequency distribution, we first list all the values that LOS can take, from the
lowest observed value to the highest. We then enter the number of observations (frequen-
cies) corresponding to a given LOS. Table 1-1 illustrates what the resulting frequency dis-
tribution looks like. Note that all values for LOS between the lowest and highest are listed,
even though there may not be any observations for some of the values. Each column of the
distribution is properly labeled; the total is given in the bottom row. We can also display a
frequency distribution by categories into which a variable may fall. Table 1-2 shows a fre-
quency distribution for the number of patients discharged from Critical Care Hospital by re-
ligion, a variable composed of categories. The proportion for each category is also displayed
in the table. The sum of the proportions for each category is equal to 1.0. We will examine
frequency distributions in greater detail in Chapter 4.

Table 1-1 Frequency Distribution for Patient Length
of Stay (LOS), Pediatric Unit

LOS in Days No. of Patients

—
COWwooNOOORrWN-=
—
N2 W= 000NDN

D

Total

Table 1-2 Frequency Distribution of Number of Patients
Discharged from Critical Care Hospital by Religion, July
20xx

Religion Number of Discharges Proportion

Protestant 422 0.48
Catholic 315 0.36
Jewish 20 0.02
Other 127 0.14

Total 884 1.00
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RATIOS, PROPORTIONS, AND RATES

Variables often have only two possible categories, such as alive or dead, or male or female.
Variables having only two possible categories are called dichotomous. The frequency mea-
sures used with dichotomous variables are ratios, proportions, and rates. All three mea-
sures are based on the same formula:

ratio, proportion, rate = x/y x 10"

In this formula, x and y are the two quantities being compared, and x is divided by y. 10"
is read as “10 to the nth power.” The size of 10" may equal, for example, 1, 10, 100, or 1,000,
depending on the value of n:

10°=1

10* = 10

102 = 10 X 10 = 100

10° = 10 X 10 X 10 = 1,000

Ratios

In a ratio, the values of a variable, such as sex (x = female, y = male), may be expressed so
that x and y are completely independent of each other, or x may be included in y. For exam-
ple, the sex of patients discharged from a hospital could be compared in either of two ways:

Female/male or x/y
Female/(male + female) or x/(x + y)

In the first option, x is completely independent of y, and the ratio represents the number
of female discharges compared to the number of male discharges. In the second option, X is
a proportion of the whole, x + y. The ratio represents the number of female discharges com-
pared to the total number of discharges. Both expressions are considered ratios.

How, then, would you calculate the female-to-male ratio for a hospital that discharged 457
women and 395 men during the month of July? The procedure for calculating a ratio is out-
lined in Exhibit 1-1.

Proportions

A proportion is a particular type of ratio. A proportion is a ratio in which x is a portion of
the whole, x + y. In a proportion, the numerator is always included in the denominator. Ex-
hibit 1-2 outlines the procedure for determining the proportion of hospital discharges for
the month of July that were female.



Ratios, Proportions, and Rates 5

Exhibit 1-1 Calculation of a Ratio: Discharges for July 20xx

1. Definex and y.
x = number of female discharges
y = number of male discharges
2. ldentify x and y.
x = 457
y = 395
3. Set up the ratio x/y.
457/395
4. Reduce the fraction so that either x or y equals 1.
1.16/1

There were 1.16 female discharges for every male discharge.

Exhibit 1-2 Calculation of a Proportion: Discharges for
July 20xx

1. Define x and y.
x = number of female discharges
y = number of male discharges
2. ldentify x and y.
x = 457
y = 395
3. Set up the proportion
x/(x +y) 457/(457 + 395) = 457/852
4. Reduce the fraction so that either x or x = y equals 1.
0.54/1.00

The proportion of discharges that were female is 0.54.

Rates

Rates are a third type of frequency measure. In health care, rates are often used to measure
an event over time and are sometimes used as performance improvement measures. The ba-
sic formula for a rate is:

No. of cases or events occurring during a given time period X 10"
No. of cases or population at risk during same time period

or

Total number of times something did happen x 10"
Total number of times something could happen
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In inpatient facilities, there are many commonly computed rates. In computing the Cae-
sarean section rate, we count the number of Caesarean sections (C-sections) performed dur-
ing a given period of time; this value is placed in the numerator. The number of cases or
population at risk is the number of women who delivered during the same time period; this
number is placed in the denominator. By convention, inpatient hospital rates are calculated
as the rate per 100 cases (10" = 10 = 10 X 10 = 100) and are expressed as a percentage.
The method for calculating the hospital C-section rate is presented in Exhibit 1-3.

Exhibit 1-3 Calculation of C-Section Rate for July 20xx

For the month of July, 23 C-sections were performed; during the same time period, 149 women delivered.
What is the C-section rate for the month of July?

1. Define the variable of interest (numerator) and population or number of cases at risk (denominator).
Numerator: total number of C-sections performed in July
Denominator: total number of women who delivered in July, including C-sections
2. ldentify the numerator and denominator.
Numerator: 23
Denominator: 149
3. Set up the rate.
23/149
4. Divide the numerator by the denominator, and multiply by 100 (10" = 10?).
(23/149) X 100 = 15.4%.

The C-section rate for the month of July is 15.4%.

POPULATION-BASED MORTALITY MEASURES

As the profession of health information management moves into integrated health care de-
livery systems and assumes more prominence in managed care organizations, it becomes
more important to be familiar with community-based mortality and morbidity data. This
type of information is often used in planning health services, such as number of inpatient
facilities, type of outpatient facilities, and number or size of managed care plans for a given
community, as well as for developing managed care contracts with hospitals and physicians.

Crude Death Rate

The crude death rate is a measure of the actual or observed mortality in a given population.
Crude rates apply to a population without regard to characteristics of the population, such
as the distribution of age or sex. The crude death rate is the starting point for further devel-
opment of adjusted rates. It measures the proportion of a population that has died during a
specific period of time, usually one year, or the number of deaths per 1,000 in a community
for a given period of time. The crude death rate is calculated as follows (the midinterval pop-
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ulation is the estimated population of a given community at the midpoint of the time frame
under study):

Total deaths during a given time interval X 10" = deaths per 10"
Estimated midinterval population

In calculating the crude death rate, the power of n is usually equal to the value that will
result in a value greater than 1. This allows for easier interpretation of the rate—a death rate
of less than 1 per 100 is not very meaningful. For example, the 2004 midyear population of
Anytown, USA, is 1,996,355; 275 deaths occurred in 2004. The power of n that will result
in a whole number is 4; 10* = 10 X 10 X 10 X 10 = 10,000. The crude death rate is cal-
culated as follows:

(275 x 10,000)/1,996,355 = 2,750,000/1,996,355 = 1.38 deaths per 10,000

When analyzing crude death rates, or any type of rate, it is important to remember that
these events do not occur in a vacuum. When analyzing any data set, we need to remember
that the data do not stand alone, but reflect trends in the environment. Trends in death rates
can be influenced by three variables: time, place, and person. Examples of time, place, and
person variables are outlined in Exhibit 1-4. An example of how trended data may be af-
fected by time, place, and person variables is presented in Figure 1-1. The line graph shows
that the number of newly diagnosed acquired immune deficiency syndrome (AIDS) cases
steadily increased from 1983 to 1992; then a rather dramatic increase occurred in 1993,

Exhibit 1-4 Variables Affecting Trends in Community Morbidity and Mortality

* Time
Transition from International Classification of Diseases, 9th Revision (ICD-9) to ICD-10 in coding
of death certificates
Improvements in medical technology
Earlier detection and diagnosis of disease
* Place
Changes in environments
International and intranational differences in medical technology and the use of medical technology
Diagnostic practices of physicians
Variation in physician practice patterns by region
* Person
Age
Sex
Ethnicity
Social habits (smoking, diet, alcohol)
Genetic background
Emotional and mental characteristics
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Figure 1-1 AIDS Cases Diagnosed in Ohio by Year, 1983-1995.
Source: Reprinted from Prevention Monthly, Vol. 19, No. 3, p. 6, 1996, Ohio Department of Health.
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which was then followed by a return to previous levels in 1994 and 1995. What happened in
1993 that resulted in such a large increase in the number of newly diagnosed AIDS cases?

This is an example of how the time variable can affect the number of cases diagnosed. In
1993, the case definition of AIDS changed so that individuals who were human immuno-
deficiency virus (HIV) positive were designated as having full-blown AIDS at an earlier
point in the progression of their disease. In 1993, the case definition was expanded to in-
clude HIV-positive cases with low CD4 counts, pulmonary tuberculosis, and recurrent pneu-
monia as AIDS qualifying conditions. The result was that a large number of HIV-positive
individuals who already had one of these conditions suddenly qualified as AIDS cases.

Now let’s return to our discussion of the crude death rate. Crude rates do not allow
for valid comparisons across populations because of differences in the populations—
primarily age. This is because age is the most important variable that influences mortality.
To illustrate, let's compare two hypothetical crude mortality rates for the states of Arizona
(10.9/1,000) and Alaska (4.4/1,000). The conclusion drawn from a comparison of the
crude mortality rates is that the death rate is 148% higher in Arizona than in Alaska:
(10.9 — 4.4)/4.4. However, the discrepancy is due largely to the age differences in the pop-
ulations of Arizona and Alaska. In general, the population in Arizona is older than the pop-
ulation in Alaska. Without adjusting the rate, one might erroneously conclude that the
Alaskan population was healthier than the population of Arizona. In this example, the com-
parison is confounded by age. Confounding factor is a general term used to describe the
effect of a third variable on the estimate of risk of a health outcome.
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Confounding occurs when a third factor related to outcome is differentially distributed
across the levels (or categories) of a variable of interest. When this happens, we must take
measures to separate the effect of the confounding variable—in this case, age—from the
effect of the variable of interest. We can accomplish this by selecting subjects to be com-
pared so that they are matched with respect to the confounding variables, or by using sta-
tistical adjustments during analysis to remove the effect of the confounding variable. For
example, review the data in Table 1-3. Analysis of the data reveals that the overall crude rate
is less for blacks than for whites but that the age-specific death rate for blacks is higher than
the rates for whites in every age group. Why is there such a contradiction? It is because the
2001 population of the state of Georgia consisted of old whites and young blacks—33.7%
of the white population was 24 years old or younger, and 43.1% of the black population was
24 years old or younger.

Table 1-3 Age-Specific Death Rates per 1,000 Population, State of Georgia, 2001

Race Crude Rate < 1Yr. 1-4Yrs. 5-14 Yrs. 15-24 Yrs. 25-44 Yrs. 45-64 Yrs. =65 Yrs.

White 8.15 6.25 0.42 0.18 0.92 1.49 6.53 51.256
Black 7.04 13.33 0.51 0.24 1.04 2.54 10.68 59.02

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), CDC
On-line Database, wonder.cdc.gov.

Age-Specific Death Rates
In Table 1-3, we see the age-specific death rates (ASDR) for both whites and blacks. The
ASDR is calculated as follows:

No. of deaths in the age group of interest X 10"
Estimated mid-period population in the age group of interest

Age-Adjusted Death Rates

Age-adjusted death rates are used when there are differences in the age distribution for the
populations that are being compared. In Table 1-4, you can see that the population propor-
tions for each age group vary slightly by race. For example, the proportion of whites that are
older than age 65 is 0.115 (11.5%) and the proportion of blacks that are older than 65 is
0.064 (6.4%). When we adjust the crude rate for age, we are constructing a summary rate
that is free of age bias. In Table 1-4, the ASDR for each age group is expressed as a per-
centage. There are two methods for adjusting the crude death rate—direct and indirect. We
will first discuss the direct method of standardization.
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Table 1-4 Calculation of Crude Death Rate, State of Georgia, 2001

(a) (b) (d) (e) (f) (h)

White Pop. (c) ASDR Black Pop. (9) ASDR

Age  Population Prop. Deaths (c/a) x 100 Population Prop. Deaths (g/f) x 100
<1 85,648 0.015 535 0.62% 43,727 0.018 583 1.33%
1-4 309,451 0.054 129 0.04% 163,909 0.067 83 0.05%
5-14 768,143 0.134 137 0.02% 444,244 0.181 108 0.02%
15-24 770,501 0.134 706 0.09% 404,438 0.165 420 0.10%
25-44 1,811,149 0.315 2,698 0.15% 793,495 0.324 2,015 0.25%
45-64 1,338,338 0.233 8,746 0.65% 442,005 0.180 4,719 1.07%
65+ 660,428 0.115 33,847 5.13% 157,770 0.064 9,312 5.90%

Total 5,743,658 1.000 46,798 0.81% 2,449,588 1.000 17,240 0.70%
Crude Death Rate = 0.81/100 Crude Death Rate = 0.70/100

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention (CDC),
CDC On-line Database, wonder.cdc.gov.

Direct Standardization

To age-adjust the crude death rates, we compare the two groups being studied to a standard
population. We then apply the ASDRs for each group to this standard population. As an ex-
ample, we will use the data in Table 1-4 to standardize the crude death rates for whites and
blacks in the state of Georgia. The crude death rate for whites is 0.81 per 100, and the crude
death rate for blacks is 0.70 per 100. To calculate the standardized rate, we first calculate
the ASDR for each age group in the two populations. We then combine the populations for
each age group. By multiplying ASDR for each group by the combined population, we can
obtain the expected number of deaths for each group as if the population for each age group
were the same. For example, for the age group from 1 to 4 years, we add 309,451 and
163,909 to obtain a total of 473,360. We then multiply the combined population total for
each age group by the ASDR to obtain the expected number of deaths for each age group in
each of the populations being compared. Thus, the groups are compared on an equal basis.
The expected death rate for each population is calculated as follows:

Group Age Group Total Population ASDR Expected No. of Deaths

White 1-4 473,360 0.0004 189.3
Black 1-4 473,360 0.0005 236.7

After we have calculated the expected number of deaths for each age group in each pop-
ulation, we sum the expected number of deaths in each population group, as in Table 1-5.
For whites the total number of expected deaths is 59,744.1, and for blacks the total is
77,209.7. The expected number of deaths for each population group is then divided by the
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Table 1-5 Calculation of Adjusted Death Rate, Direct Standardization, State of Georgia, 2001

(c) (e)
Expected Expected
(a) (b) No. Deaths (d) No. Deaths

Age Total Population ASDR Whites (axb) ASDR Blacks (a xd)
<1 129,375 0.62% 802.1 1.33% 1,720.7
1-4 473,360 0.04% 189.3 0.05% 236.7
5-14 1,212,387 0.02% 242.5 0.02% 242.5
15-24 1,174,939 0.09% 1,057.4 0.10% 1,174.9
25-44 2,604,644 0.15% 3,907.0 0.25% 6,511.6
45-64 1,780,343 0.65% 11,572.2 1.07% 19,049.7
65+ 818,198 5.13% 41,973.6 5.90% 48,273.7
Total 8,193,246 0.81% 59,7441 0.70% 77,209.7

0.73% 0.94%
Standardized Age-Adjusted Rate = 0.73% Standardized Age-Adjusted Rate = 0.94%

59,744.1/8,193,246 77,209.7/8,193,246

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), CDC
On-line Database, wonder.cdc.gov.

combined population. The result is that the standardized age-adjusted death rate for blacks
is slightly higher (0.94%) than that for whites (0.73%).

Even though the standardized adjusted rate is not “real,” it allows researchers to make bet-
ter comparisons between groups. The crude rates indicate that the mortality rate is slightly
higher for whites than for blacks, but the adjusted rates indicate that mortality among blacks
is slightly higher than that for whites. Without adjustment, we would make the assumption
that mortality was slightly higher in the white population. An adjusted rate informs us that
this may not necessarily be the case.

Indirect Standardization

The indirect method of standardization is used when ASDRs are not available, or when the
population that we wish to compare is small, as when we are comparing hospital inpatients
to much larger populations. When using this method, we use standard rates obtained from
some population and apply them to our population of interest. The basic steps for indirect
standardization appear in Exhibit 1-5. In our hypothetical example, we compare 2002 Utah
hospital discharges that resulted in death due to pneumonia to the number of hospital dis-
charges that resulted in death due to pneumonia in Salt Lake County, Utah.

In our calculations in Table 1-6, we see that the overall mortality rate due to pneumonia
in the state of Utah is 5.08% and that the mortality rate in Salt Lake County is 5.12%
[(100 X 100)/1,953]. Salt Lake County had 1.5 more deaths than what was expected on the
basis of the standard rates for the state of Utah; therefore, the expected mortality rate is
5.04% [(98.5 X 100)/1,953]. To make the comparison to the standard rates, we calculate a
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Exhibit 1-5 Basic Steps for Indirect Standardization

. Determine the standard mortality rates for pneumonia in the state of Utah for the age groups of

interest.

. Multiply the ASDR for the state of Utah (column c) times the number of county discharges in each

age category to obtain the expected number of deaths for each category (columns ¢ X d = column f)
in Salt Lake County, Utah.

.- Sum the number of expected deaths.
. Compute the standard mortality ratio (SMR), which compares the number of actual or observed deaths

to the number of expected deaths. In Table 1-6, the number of actual or observed deaths is 100, and
the number of expected deaths is 98.5.

. Multiply the SMR by 100. The SMR s interpreted as a percentage lesser or greater than that of the

standard population.

standard mortality ratio (SMR). The SMR compares the actual number of deaths in the
group under study (Salt Lake County) to the expected number of deaths based on the standard
population rates that were applied to the study group. For the data in Table 1-6, the SMR is
calculated as:

B Observed death rate ~0.0512
 Expected death rate ~ 0.0504

SMR

= 1.016 X 100 = 101.6%

Table 1-6 Mortality Rates Due to Pneumonia (ICD-9-CM Codes 480-486) 2002, Ages 35+, State
of Utah versus Salt Lake County, Utah

State of Utah Salt Lake County, Utah
(@ (c) (d) (e) (f)
Utah (b) ASDR County Observed Expected
Age Discharges  No. Deaths (b x 100)/a  Discharges Deaths Deaths (c x d)
35-45 344 7 2.03% 151 3 3.1
45-54 533 9 1.69% 227 3 3.8
55-64 684 17 2.49% 237 5 5.9
65-74 1,071 53 4.95% 371 17 18.4
75+ 2,542 177 6.96% 967 72 67.3
Total 5,174 263 5.08% 1,953 100 98.5

Observed Death Rate 5.12%
Expected Death Rate 5.04%

SMR = 0.0512 1.1016
0.0504

Source: Utah Inpatient Hospital Discharge Dataset, Utah Office of Health Care Statistics, www.health.state.ut.us.
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If the calculated SMR is equal to 100, the number of observed deaths is the same as the
number of expected deaths. If the SMR is greater than 100, the number of observed deaths
is greater than the number of expected deaths. The interpretation of the SMR is that Salt
Lake County’s pneumonia death rate is 1% greater than that for the state of Utah. Stated an-
other way, the death rate is 1% greater than what would be expected on the basis of the mor-
tality rates due to pneumonia for the entire state of Utah.

In summary, rates are adjusted to remove the effect of the confounding factor for which
the adjustment has been made—in this case, age. However, it is always necessary to calcu-
late the crude rate because this represents the actual event. An adjusted rate is used for com-
parative purposes; adjusted rates do not reveal the underlying raw data that are shown by the
crude rates.

Race- and Sex-Specific Death Rates

Mortality rates may be calculated for any variable of interest, such as race or sex, using the
same basic formula specified for calculating the crude death rate. Historically in the United
States, men have had higher mortality rates than women, but the gap may be narrowing. In
1995, the U.S. sex-specific rate was 9.2 per 1,000 for men and 8.6 per 1,000 for women.
However, in 2001, the sex-specific death rate for men was 8.45 per 1,000 for men and 8.49
per 1,000 for women (Table 1-7).

Table 1-7 Sex-Specific Death Rates, United States, 2001

Women Men
Rate/ Rate/
Age Population Deaths 1,000 Population Deaths 1,000
Under 1 Year 1,968,011 12,091 6.14 2,057,922 15,477 7.52
1-4 years 7,491,412 2,208 0.29 7,841,553 2,899 0.37
5-9 years 9,861,089 1,366 0.14 10,347,035 1,727 0.17
10-14 years 10,199,195 1,561 0.15 10,711,245 2,441 0.23
15-19 years 9,847,662 3,789 0.38 10,423,650 9,766 0.94
20-24 years 9,630,499 4,500 0.47 10,080,924 14,197 1.41
25-34 years 19,698,788 12,926 0.66 20,116,087 28,757 1.43
35-44 years 22,675,474 33,510 1.48 22,464,812 58,164 2.59
45-54 years 19,971,971 63,217 3.17 19,256,395 104,848 5.44
55-64 years 13,160,005 99,181 7.54 12,155,918 144,958 11.92
65-74 years 10,020,545 189,379 18.90 8,301,935 241,581 20.10
75-84 years 7,585,929 361,187 47.61 4,996,556 340,742 68.20

85 years and over 3,127,729 447,998 143.23 1,320,580 217,533 164.73

Total 145,238,309 1,232,913 8.49 140,074,612 1,183,090 8.45

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), CDC
On-line Database, wonder.cdc.gov.
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It would be misleading to review the sex-specific death rates without review of the in-
dividual age-specific rates. Table 1-7 indicates that the death rate for men is higher for every
age group. If we want to determine why the death rate of men is higher than that for women,
we can compare causes of death by sex and age group. For example, in the combined age
groups from 15 to 44 years, the death rate for men is higher than that for women because
accidental death is the leading cause of death for men in these age groups. Sex-specific dis-
eases may account for the differences in the death rates for other age groups, such as
prostate cancer in men and breast cancer in women. Calculating the age-specific rates and
the sex-specific rates can help us better understand what is taking place in the health care
environment.

Cause-Specific Death Rates

The cause-specific death rate is the death rate due to a specified cause. It may be stated
for an entire population or for any age, sex, or race. The numerator is the number of deaths
due to a specified cause and the denominator is the size of the population at midyear. It is
usually expressed in terms of a rate per 100,000 (10" = 10° = 100,000). The formula is:

Deaths assigned to a specified cause during a given time interval X 100,000

Estimated midinterval population

Table 1-8 presents the cause-specific death rates for males and females. The cause-
specific death rate for pneumonia in the population aged 45 or older is 62.76 per 100,000
for women and 60.08 per 100,000 for men. While the overall cause-specific death rate for
women is higher for women than for men, the cause-specific rates for each age group are
consistently higher for men than for women. In reviewing the rates in Table 1-6, we can also
see that the death rate increases with age for both men and women.

Table 1-8 Cause-Specific Mortality Rates, By Sex, Due to Influenza and Pneumonia (ICD-10
Codes J10-J18.9), Age 45+, United States, 2001

Women Men
Rate/ Rate/
Age Population Deaths 100,000 Population Deaths 100,000 ASDR
45-54 years 19,971,971 702 3.51 19,256,395 1,099 5.71 4.59
55-64 years 13,160,005 1,117 8.49 12,155,918 1,587 13.06 10.68
65-74 years 10,020,545 2,918 29.12 8,301,935 3,732 44.95 36.29
75-84 years 7,585,929 9,383 123.69 4,996,556 9,294 186.01 148.44

85 years and over 3,127,729 19,689 629.50 1,320,580 10,502 795.26 678.71

Total 53,866,179 33,809 62.76 46,031,384 26,214 56.95 60.08

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), CDC
On-line Database, wonder.cdc.gov.
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Case Fatality Rate

The case fatality rate or killing power of a disease measures the probability of death among
the diagnosed cases of a disease. The higher the ratio, the more virulent the infection. It is
most often used as a measure in acute infectious disease. The case fatality rate is not useful
in chronic disease because such diseases have a longer and more variable course.

The formula for the case-fatality rate is:

No. of deaths due to a disease during a given time interval X 100

No. of cases of the disease in the same time interval

Proportionate Mortality Ratio

The proportionate mortality ratio (PMR) describes the proportion of all deaths for a
given time interval that are due to a specific cause. Each cause is expressed as a percent-
age of all deaths, and the sum of all the causes is 1.00 (100%). The PMR is not a mortal-
ity rate, since the denominator is all deaths, not the population in which the deaths
occurred. Its formula is:

No. of deaths due to a disease during a given time interval X 100

No. of deaths from all causes in the same time interval

The PMR is often used to make comparisons between and within age groups and occu-
pational groups, as well as for the general population. The PMR for pneumonia appears in
Table 1-9.

Maternal Mortality Rate

The maternal mortality rate measures deaths associated with pregnancy. Pregnancy often
places a woman at risk for medical problems that would not usually be encountered in the
nonpregnant state, such as hemorrhage or toxemia of pregnancy. Pregnancy also compli-
cates chronic conditions such as diabetes mellitus and heart disease. In some women, preg-
nancy precipitates gestational diabetes. The maternal mortality rate is calculated only for
deaths that are related to pregnancy; thus, if a pregnant woman is killed in an automobile
accident, the death is not considered a pregnancy-related death.

The numerator is the number of deaths assigned to causes related to pregnancy during a
given time period; the denominator is the number of live births reported during the same pe-
riod. Because the maternal mortality rate is usually very small, it is usually expressed as the
number of deaths per 100,000 live births.
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Table 1-9 Proportionate Mortality Ratios for Influenza and Pneumonia (ICD-10 Codes
J10-J18.9), United States, 2001

Influenza and

Age Pneumonia Deaths Total Deaths PMR/100
0-4 years 411 32,675 1.26
5-9 years 46 3,093 1.49
10-14 years 46 4,002 1.15
15-19 years 66 13,555 0.49
20-24 years 115 18,697 0.62
25-34 years 339 41,683 0.81
35-44 years 983 91,674 1.07
45-54 years 1,801 168,065 1.07
55-64 years 2,704 244139 1.1
65-74 years 6,650 430,960 1.54
75-84 years 18,677 701,929 2.66
85 years and over 30,191 665,531 4.54
Total 62,029 2,416,003 2.57

Source: United States Department of Health and Human Services, Centers for Disease Control and Preven-
tion (CDC), CDC On-line Database, wonder.cdc.gov.

Rates of Infant Mortality

There are three rates of infant mortality, all of which are based on age. Of the three, the in-
fant mortality rate is the most commonly used measure for comparing health status between
nations. All three rates are expressed in terms of the number of deaths per 1,000.

Neonatal Mortality Rate

The neonatal period is defined as the period from birth up to but not including 28 days of
age. The numerator is the number of deaths of infants under 28 days of age during a given
time period; the denominator is the total number of live births reported during the same pe-
riod. The neonatal mortality rate may be used as an indirect measure of the quality of pre-
natal care and/or the mother’s prenatal behavior (e.g., tobacco, alcohol, and drug use).

Postneonatal Mortality Rate

The postneonatal period is the time period from 28 days of age up to but not including one
year of age. The numerator is the number of deaths among children from age 28 days up to
but not including one year of age during a given time period; the denominator is the total
number of live births reported less the number of neonatal deaths during the same period.
The postneonatal mortality rate is often used as an indicator of the quality of the infant’s
home environment.
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Infant Mortality Rate

In effect, the infant mortality rate is a summary of the neonatal and postneonatal mortal-
ity rates. The numerator is the number of deaths among children under one year of age; the
denominator is the number of live births reported during the same period. Table 1-10 pro-

vides a summary of these rates.

Table 1-10 Frequently Used Mortality Measures

Measure

Numerator (x)

Denominator

107

Crude death rate

Total no. of deaths
reported during given

Estimated midinterval
population

1,000 or 10,000

time interval
Cause-specific death Total no. of deaths due Estimated midinterval 100,000
rate to a specific cause population
during a given time
interval
Proportionate Total no. of deaths due to  Total no. of deaths from 100 or 1,000
mortality ratio a specific cause during a  all causes during the
given time interval same time interval
Case fatality rate Total no. of deaths Total no. of cases of 100
assigned to a specific the disease during the
disease during a given same time interval
time interval
Neonatal mortality No. of deaths under 28 No. of live births 1,000
rate days of age during a during the same time
given time interval interval
Postneonatal rate No. of deaths from 28 No. of live births 1,000
days up to and not during the same time
including one year of interval less neonatal
age, during a given time deaths
interval
Infant mortality rate No. of deaths under No. of live births during 1,000
one year of age during the same time interval
a given time interval
Maternal mortality No. of deaths assigned No. of live births during 100,000

rate

to pregnancy-related
causes during a given
time interval

the same time interval
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FREQUENTLY USED MEASURES OF MORBIDITY

Some commonly used measures to describe the presence of disease in a community or a spe-
cific location, such as a nursing home, are incidence and prevalence rates. Disease can be
illness, injury, or disability, and measures can be further elaborated into specific measures
of age, sex, race, or other characteristics of a particular population.

Incidence Rate

The incidence rate is the commonly used measure for comparing frequency of disease in
populations. Populations are compared using rates instead of raw numbers because rates ad-
just for differences in the size of the populations. The incidence rate expresses the proba-
bility or risk of illness in a population over a period of time. The formula for calculating the
incidence rate is:

Total no. of new cases of a specific disease during a given time interval x 10"

Total population at risk during the same time interval

For the incidence rate, the denominator represents the population from which the case in
the numerator arose, such as a nursing home, school, or company. For 10", a value is se-
lected so that the smallest rate calculated results in a whole number.

Prevalence Rate

The prevalence rate is the proportion of persons in a population that have a particular dis-
ease at a specific point in time, or over a specified period of time. The formula for calcu-
lating the prevalence rate is:

All new and preexisting cases of a specific disease during a given time interval X 10"

Total population during the same time period

Incidence and prevalence rates are often confused. The rates differ based on which cases
are included in the numerator. The numerator of the incidence rate is new cases occurring
during a given time period; the numerator of the prevalence rate is all cases present during
a given time period. In comparing the two, you can see that the incidence rate includes only
individuals whose illness began during a specified period of time, whereas the numerator
for the prevalence rate includes all individuals ill from a specified cause, regardless of when
the illness began. A case is counted in prevalence until the individual recovers. Exhibit 1-6
presents an example of incidence and prevalence rates in a nursing home.

At times we may be interested in tracking prevalence rates more closely—for example,
tracking Klebsiella pneumoniae on a daily basis. We can do this by calculating the point
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Exhibit 1-6 Calculation of Incidence and Prevalence Rates of Klebsiella pneumoniae at the Manor Nursing

Home, Month of January

At Manor Nursing Home, 10 new cases of Klebsiella pneumoniae occurred in January. For the month of
January there were a total of 17 cases of Klebsiella pneumoniae. The facility had 250 residents during
January.

What are the incidence and prevalence rates for Klebsiella pneumoniae during January?
Incidence Rate

1. ldentify the variable of interest (numerator) and population at risk (denominator).
Numerator: Total no. of new cases of Klebsiella pneumoniae in January
Denominator: Total no. of nursing home residents in January

2. ldentify the numerator and denominator.

Numerator: 10
Denominator: 250

3. Set up the rate.
10/250

4. Divide the numerator by the denominator and multiply by 100 (10" = 10?).
(10/250) X 100 = 0.04 = 4.0%

The incidence rate for Klebsiella pneumoniae for the month of January is 4.0%.
Prevalence Rate

1. ldentify the variable of interest (numerator) and population at risk (denominator).
Numerator: Total no. of cases of Klebsiella pneumoniae in January
Denominator: Total no. of nursing home residents in January
2. ldentify the numerator and denominator.
Numerator: 17
Denominator: 250
3. Set up the rate.
17/250
4. Divide the numerator by the denominator and multiply by 100 (10" = 102). (17/250) X 100 = 0.068%

The prevalence rate for Klebsiella pneumoniae for the month of January is 6.8%.

prevalence rate. The point prevalence rate is the number of cases of a specific disease at a
specific point in time. The point prevalence rate is more narrow in its time frame than the
general prevalence rate. Table 1-11 displays the point prevalence rates for each day during

one week in January.
For a summary of morbidity measures, see Table 1-12.
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Table 1-11 Point Prevalence Rates of Klebsiella pneumoniae for the Manor Nursing Home, Week
of January 3

Sun. Mon. Tues. Weds. Thurs. Fri. Sat.
No. of cases 10 12 14 13 15 16 16
No. of residents 250 250 250 250 250 250 250

Point Prevalence rate 4.0% 4.8% 5.6% 5.2% 6.0% 6.4% 6.4%

Table 1-12 Frequently Used Measures of Morbidity

Measure Numerator Denominator
Basic formula for No. of events occurring during No. of cases or
computing rates a given time interval population at risk during the

same time interval

Incidence rate Total no. of new cases of a Total population at risk during
specific disease during a the same time interval
given time interval

Prevalence rate All new and preexisting cases Total population during the
of a specific disease during same time interval
a given time interval

Relative risk Risk for exposed group Risk for unexposed group
Relative risk using Incidence rate for group Incidence rate for comparison
incidence rates of primary interest group

Attributable risk Risk for exposed group minus Risk for exposed group

risk for unexposed group

RELATIVE MEASURES OF DISEASE FREQUENCY

Risk Ratio/Relative Risk

Relative risk (RR) is a ratio that compares the risk of disease or other health event between
two groups. What we are comparing is the actual risk of illness between the two groups. In
calculating relative risk, we are using the actual rates of illness for each group to make the
comparison. The two groups may be differentiated by demographic variables, such as sex or
race, or by exposure to a suspected risk factor.

The group of primary interest is labeled as the exposed group, and the comparison group
is labeled the unexposed group. The exposed group is placed in the numerator, and the un-
exposed group is placed in the denominator:
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Risk for exposed group

Risk for unexposed group

A risk ratio of 1.0 indicates that the risk is identical in both groups; a risk ratio greater
than 1.0 indicates that the risk is greater for the numerator group; and a risk ratio of less than
1.0 indicates that the risk is less for the numerator group.

As an example, we can compare the risk of death due to malignancies in men versus
women in Michigan in 2001. First, the collected data are summarized in a two-by-two table.
Two-by-two refers to two variables, each with two categories, as shown in Table 1-13.

Table 1-13 Relative Risk of Death Due to Malig-
nancies, Women versus Men Aged 65+, State of
Michigan, 2001

Death Due to Pneumonia

Sex Yes No Total
Men 7,153 21,507 28,660
(@ (b) (a+b)

Women 6,565 28,890 35,455
(c) (d) (c+d)

Risk of illness among men:
al(a + b) = 7,153/(7,15321,507) = 0.2496
Risk of illness among women
c/(c + d) = 6,565/(6,565 + 28,890) 0.1852
Risk ratio, men to women: 0.2496/1852 = 1.34
Thus, the risk of death due to malignancy
among men aged 65+ is 1.3 times greater
than the risk of death due to malignancy in
women in the same age group.

Source: United States Department of Health and Human Ser-
vices, Centers for Disease Control and Prevention (CDC), CDC
On-line Database, wonder.cdc.gov.

To determine the risk of death among men, we compare the total number of men who
died from malignancies (a = 7,153) to the total number of men in the group of interest
(a + b = 7,153 + 21,507). The same procedure is followed to determine the risk of death
due to pneumonia among women. The two ratios are then compared to determine the RR of
death due to malignancies among men as compared to women. A summary of these calcu-
lations appears in Table 1-13. Note that the RR in each group is somewhat high, 25.0% and
18.5% respectively. Deaths due to malignancies were the second leading cause of death in
the state of Michigan in 2001.

Instead of using the risk ratios to compare risks between groups, we can use actual rates
to make the same comparisons. In Table 1-14, hypothetical mortality rates are used to com-
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Table 1-14 Lung Cancer Data

Cigarettes/Day Death Rate/1,000/Year
0 0.07
1-14 0.57
15-24 1.39
25+ 2.27
Rate ratios:
1-14 cigarettes/day to nonsmokers:
0.57/0.07 = 8.1

15-24 cigarettes/day to nonsmokers:
1.39/0.07 = 19.9

25+ cigarettes/day to nonsmokers:
2.27/0.07 = 32.4

Thus, the risk is 8.1 times greater for those
who smoke 1 to 14 cigarettes per day than for
nonsmokers; 19.9 times greater for those who
smoke 15 to 24 cigarettes per day than for
nonsmokers; and 32.4 times greater for those
who smoke 25 cigarettes per day than for non-
smokers.

Source: Adapted from Principles of Epidemiology: An In-
troduction to Applied Epidemiology and Biostatistics, p. 95,

1992, United States Department of Health and Human Ser-
vices, Public Health Service.

pare the risk of death due to lung cancer by number of cigarettes smoked per day. Using the
same procedure, we can compare the risk of stroke between men who smoke and men who
do not smoke. In this example, we are trying to determine if there is a greater risk of stroke
among men who smoke than among men who do not smoke. The statistic is called “relative
risk using incidence rates” and is calculated as:

Incidence rate for group of primary interest

Incidence rate for comparison group

The data for this example are presented in Table 1-15. Note that these ratios represent
only RR, or the possibility of acquiring an illness, in comparison to another group.

Odds Ratio

The odds ratio (OR) is another relative measure of occurrence of illness. The odds in favor
of a particular event are defined as the frequency with which the event occurs divided by the
frequency with which it does not occur. Estimates of RR and the OR are both used to mea-
sure the strength of the association between exposure and disease. The OR is an estimate of
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Table 1-15 Twelve-Year Risk of Stroke
Among Male Smokers and Nonsmokers

Stroke
Smokers Yes No Total
Yes 171 3,264 3,435
No 117 4,320 4,437
Total 288 7,584 7,872

Risk of stroke among smokers:
171/3,435 = 0.049
Risk of stroke among nonsmokers:
117/4,437 = 0.026
Risk of male smokers to male nonsmokers:
0.049/0.026 = 1.88
Thus, the risk of stroke is 1.88, or almost two
times greater in men who smoke than men
who do not smoke.

RR. It is calculated from data obtained from retrospective studies where actual incidence
rates are not calculated.

To calculate the OR, a two-by-two table is first constructed as shown in Table 1-16. Ex-
hibit 1-7 displays the calculation of the odds ratio using the data from Table 1-15. The re-
sults indicate that the odds of having a stroke is 1.93 times greater in men who smoke than
in men who do not smoke.

Table 1-16 Two-by-Two Table for Odds Ratio

Disease
Risk Factor Cases Non-cases
Present a b
Absent c d

Odds Ratio = (@ x d)/(b X c), where a = number
of persons with disease and with exposure of
interest, b = number of persons without dis-
ease and with exposure of interest, c = num-
ber of persons with disease but without
exposure of interest, and d = number of per-
sons without disease and without exposure of
interest.

a + ¢ = total persons with disease (cases)

b + d = total persons without disease (controls)
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Exhibit 1-7 Procedure for Calculating Odds Ratio (OR)

OR = (a/b) + (c/d)
— (axd)

(b X c)

171 X 4,320

OR = 3,264 X 117

=1.93

The probability of having a stroke is 1.93 times
greater in men who smoke than in men who do
not smoke.

The interpretation of the OR is similar to that for RR. If the exposure is not related to the
diagnosis, the OR will equal 1; if the exposure is positively related to the disease, the OR
will be greater than 1; and if the exposure is negative, the OR will be less than 1. We could
also apply this same ratio, or any others, to the acute care setting. An outcomes evaluator
learns that patients on the surgical unit were exposed to the E. coli bacterium. Data were col-
lected for two weeks to determine if the odds for obtaining E. coli infection were greater for
patients on the surgical units than for patients hospitalized on the medical unit. The data are
displayed in Table 1-17. As you can see from the calculations for the OR, the odds or prob-
ability of obtaining an E. coli infection is 2.68 times greater for a patient hospitalized on the

surgical unit than for a patient hospitalized on a medical unit.

Table 1-17 E.Coli Infections of Medical and Surgical Patients

Nosocomial Infection
Hospital Unit Yes No Total
Surgical Unit 20 628 648
Medical Unit 10 842 852
Total 30 1,470 1,500

The odds ratio is calculated as follows:
OR = (@ x d)/(b x c) = (20 x 842)/(10 x 628) = 2.68

When the health outcome is uncommon, the OR approximates the RR. Using the same

data from Table 1-17, we can determine the RR as follows:

Risk of infection on surgical unit: 20/648 = 0.031
Risk of infection on medical unit: 10/852 = 0.012

Risk of infection on surgical unit compared to medical unit: 0.031/0.012 = 2.58
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As you can see, the results for both the OR and the RR are similar: 2.68 and 2.58,
respectively.

Attributable Risk

The attributable risk (AR) is a measure of the impact of a disease or other causative fac-
tor on a population. With this calculation, we assume that the occurrence of the disease in a
group not exposed to the risk factor represents the baseline or expected risk for that disease;
any risk above that level in the exposed group is attributed to exposure to the risk factor. Ba-
sically, the assumption is that the disease will occur in some individuals even without ex-
posure to a given risk factor. The AR measures the additional risk of illness as a result of an
individual’s exposure to the risk factor. With AR, we attempt to answer the question, “How
much of the disease that occurs can be attributed to a certain exposure?” and subsequently,
“How much of the risk of disease can we prevent if we eliminate the exposure to the risk
factor in question?”

(Risk for exposed group) — (risk for unexposed group) X 100

Risk for exposed group

Using the lung cancer data from Table 1-14, we calculate the attributable proportion as
outlined in Exhibit 1-8.

Exhibit 1-8 Calculation of Attributable Proportion

1. Identify the exposed group rate. Lung cancer
death rate for smokers of 1-14 cigarettes per
day = 0.57 per 1,000 per year

2. Identify the unexposed group rate.

0.07 per 1,000 per year

3. Calculate the attributable proportion.

0.57 — 0.07 X 100 = 87.7
0.57

The conclusion from the calculation of the attributable proportion is that 87.7% of the
lung cancer cases are due to or attributed to smoking 1 to 14 cigarettes per day. Approxi-
mately 12% (1.00 — 0.877) of the cases in this group would have occurred without expo-
sure to the risk factor—in this case, cigarettes. By carrying out the calculations for the
remaining two groups, we can see that the AR increases with the number of cigarettes
smoked per day.
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AR 15-24 cigarettes/day = [(1.39 — 0.07)/1.39] X 100 = 95.0%
AR 25+ cigarettes/day = [(2.27 — 0.07)/2.27] X 100 = 96.9%

Approximately 5% and 3%, respectively, of the individuals in these two groups would
have acquired the disease regardless of whether or not they smoked cigarettes.

KAPLAN-MEIER SURVIVAL ANALYSIS

Many individuals within the health information management profession are employed in tu-
mor registries or in the capacity of assisting researchers in analyzing data from clinical tri-
als. In clinical trials, the researcher is interested in determining whether a specific medical
or surgical intervention improves survival for a particular condition. A major criterion in
measuring the success of a clinical trial is the survival time of individuals undergoing the
experimental treatment. In survival analysis we are examining the survival rates as a result
of a clinical trial involving a medical or surgical intervention. A major problem in conduct-
ing survival analysis is that patients may be lost to follow up or some may be censored. A
censored patient is one who for some reason is unable to complete the study.

There are several methods for analyzing survival rates, but we will limit the discussion to
the Kaplan Meier method, a type of life table analysis, since it is most often used in analy-
sis of data collected from clinical trials. Kaplan-Meier survival analysis requires a di-
chotomous outcome such as survival/death or improvement/no improvement.

The major reason for using the Kaplan Meier method is that it takes into account some of
the problems commonly encountered when conducting prospective studies. The Kaplan
Meier method compensates for subjects who are lost to follow-up or who are unable to com-
plete the study. To conduct an accurate survival analysis, we need to know:

« the reason for patients’ withdrawal from the study (i.e., death, loss to follow-up, or cen-
sorship)

« the date of withdrawal from study (i.e., date of death, date patient last seen alive or lost
to follow-up, or date withdrawn from study)

When survival time is censored, the subject is alive at the time of analysis, or was alive at
the time last seen. Survival times tagged with a “+” indicate that they are censored. Table
1-18 presents some hypothetical data for 10 patients in a clinical trial for treatment of blad-
der cancer. The survival times, in months (column 1), for each patient are rank ordered from
lowest to highest.

Each row in Table 1-18 represents an interval. The first row is the first study interval. An
interval is a death-free time period. So row 1, column 6, represents a death-free time period
of less than 23 months. This is interpreted as meaning that the probability (p,) of surviving
up to but less than 23 months is 1.000 (10/10). The p, of the first interval is always 1.000
because the first death ends the first interval. The occurrence of a death ends one death-free
interval and begins another.
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Table 1-18 Hypothetical Data on Survival Times for Bladder Cancer Patients

2 3
No. Living No. Living

(1) Prior to After (4) (6) (7)
Survival Subject’s Subject’s # Lost to (5) Interval for px at End
Time Mo. Death Death Follow-Up Px Px (Mo.) of Interval

- — - — 1.000 0 to <23 1.000

23 10 9 - 0.900 23 to <34 0.900

34 9 8 — 0.889 34 to <37 0.800

37 8 7 - 0.875 37 to <41 0.700

40+ 1 — — —

a4 6 5 - 0.833 41 to <42 0.583

42 5 4 - 0.800 42 to <43 0.466

43 4 3 — 0.750 43 to <45 0.350

45 3 2 — 0.667 45 to <47 0.233

47 2 1 - 0.500 47 to <48 0.117

48+ 1 1 1 1.000 >48 0.117

Column 1 in Table 1-18 indicates the survival time, in months, for each subject. Two pa-
tients were lost to follow-up, as indicated by “+” — one at 40 months and one at 48 months.
Patients lost to follow-up are not included in the calculations of survival rates. Columns 2,
3, and 4 indicate the number surviving before and after each death and the number lost to
follow-up during that interval. Column 5 is the proportion of patients surviving the interval
and is obtained by dividing the proportion surviving from the beginning of the interval—
from the time of the previous death to just before the next death. For example, for the in-
terval “23 to <34,” 10 patients were alive at the start of the interval, and 9 were alive at the
end. To obtain py, divide 9 by 10 to obtain 0.900.

Column 6 is the death-free period—that is, the time of the last death to the time of the
next death. Column 7, p,, is the proportion of subjects surviving from the beginning of the
study to the end of the interval. The p, is obtained by multiplying the p, values of all the in-
tervals up to and including the row of interest. For the survival time of 34 months, p, is ob-
tained by multiplying 1.000 X 0.900 X 0.889 = 0.800. Based on the calculations in Table
1-18, the probability of surviving 48 months is 0.117.

We can use SPSS (Statistical Package for the Social Sciences) to conduct the Kaplan-
Meier survival analysis. SPSS is a microcomputer statistical package that we will use
throughout this text to solve statistical problems. For the Kaplan-Meier survival analysis,
two columns on the data sheet need to be completed. The first column indicates the survival
time, in months, for each case; the second column indicates whether the survival time is cen-
sored. This can be accomplished by assigning “1” for uncensored survival times and “2” for
censored survival times under the “Define Variable” selection. An example of the SPSS data
sheet appears in Exhibit 1-9.
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Exhibit 1-9 SPSS Data Sheet for Survival Data

Survival Time (Mo.) Status
23.00 Uncensored
34.00 Uncensored
37.00 Uncensored
40.00 Censored
41.00 Uncensored
42.00 Uncensored
43.00 Uncensored
45.00 Uncensored
47.00 Uncensored
48.00 Censored

After completing the data sheet, select “Survival” and then “Kaplan Meier” under the
“Statistics” menu. The output, including the survival graph, appears in Figure 1-2. Note that
the SPSS printout provides only the p, (cumulative survival)—the probability of surviving
to the end of the interval.

Figure 1-2 SPSS Output for Kaplan-Meier Survival Analysis

Survival Function

1.0 H

0.8

0.6

0.4 H

Cumulative Survival

0.2 H

0.0

T T T T T T T
20.00 25.00 30.00 35.00 40.00 45.00 50.00
Months
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Survival Analysis for MONTHS (survival time in months)

Cumulative Standard Cumulative Number

Time Status Survival Error Events Remaining
23.00 Uncensored 0.9000 0.0949 1 9
34.00 Uncensored 0.8000 0.1265 2 8
37.00 Uncensored 0.7000 0.1449 3 7
40.00 Censored 0.6000 0.1549 4 6
41.00 Uncensored 0.5000 0.1581 5 5
42.00 Uncensored 0.4000 0.1549 6 4
43.00 Uncensored 0.3000 0.1449 7 3
45.00 Uncensored 0.2000 0.1265 8 2
47.00 Uncensored 0.1000 0.0949 9 1
48.00 Censored 0.0000 0.0000 10 0
Number of Cases: 10 Censored: 0 (.00%) Events: 10
Survival Time Standard Error 95% Confidence Interval
Mean: 40.00 2.32 (35.45, 44.55)
Median: 41.00 1.58 (37.90, 44.10)

SPSS provides a summary of the number of cases included in the analysis, including the
number of censored cases. The confidence intervals for the mean and median survival times
also are provided. (We will discuss confidence intervals in Chapter 5.) The graph depicts the
cumulative survival rate for the group under study. Time, in months, is displayed on the
X-axis, and proportion surviving is displayed on the y-axis.

CONCLUSION

In this chapter, we have discussed rates, ratios, and proportions in the form of mortality and
morbidity rates and RR. Facility-based morbidity and mortality rates can be compared with
community, state, and national rates after adjustment. We can adjust rates using either the
direct or the indirect method. Crude rates are important for internal analysis or other non-
comparative purposes.

We also reviewed various ratios that are used to measure frequency of disease. Using the
various risk ratios and the OR, we can compare risk of certain diseases and causes of mor-
bidity between groups.

Last, we discussed one method commonly used for survival analysis—the Kaplan Meier
method. Survival analysis is a tool often used in tumor registries and when analyzing results
of clinical trials.
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Appendix 1-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.

2. Describe the differences and similarities between rates, ratios, and proportions.

3. Outline the procedure for age-adjusting crude mortality rates by the direct standardiza-

tion method.

4. Describe the differences between the direct and indirect standardization methods of ad-

justing mortality and morbidity rates.

5. Describe the differences between neonatal mortality rate, postneonatal mortality rate,

and infant mortality rate.

6. Describe the difference between incidence and prevalence rates.

MULTIPLE CHOICE

For questions 1 and 2, refer to the following table:

Age Group Population No. of Deaths
< 30 15,000 20
30-65 17,000 55
> 65 6,000 155

1. What is the crude mortality rate?
a. 230
b. 6.1 per 1,000
c. 8.6 per 1,000
d. 6.1 per 10,000

31
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2. The age-specific death rate for the over-65 age group is:
a. 155

. 25.8 per 1,000

. 1.55 per 10,000

. 25.8 per 10,000

o O T

PROBLEMS

1. Review the hypothetical data on deaths in the MICU in Table 1-A-1 and answer the

questions that follow:

a. What is the ratio of male deaths to female deaths?

b. What proportion of the patients who died were admitted from the Emergency De-
partment? What proportion were transfers from other hospitals?

c. The total number of patients discharged from DRG 475 was 61. What is the case fa-
tality rate for DRG 475?

d. The total number of patients discharged from DRG 483 was 51. What is the case fa-
tality rate for DRG 483?

e. What is the relative risk of death for patients discharged from DRG 475 compared to
discharges from DRG 483?

Table 1-A-1 Critical Care Hospital, Deaths in the MICU by DRG

Adm.
DRG DRG Title Source Gender LOS
001 Craniotomy Age >17 W Cc SNF Male 2
014 Intracranial Hemorrhage & Stroke W Infarct Other Male 3
014 Intracranial Hemorrhage & Stroke W Infarct Emerdept Female 3
020 Nervous System Infection Except Viral Meningitis Other Female 15
075 Major Chest Procedures Hospital Male 6
105 Cardiac Valve & Oth Major Cardiothoracic Hospital Female 23
Proc W/O Card Cath
123 Circulatory Disorders W Ami, Expired Hospital Male 7
123 Circulatory Disorders W Ami, Expired Other Male 1
123 Circulatory Disorders W Ami, Expired Other Male 4
123 Circulatory Disorders W Ami, Expired Emerdept Male 5
172 Digestive Malignancy W Cc Emerdept Male 1
172 Digestive Malignancy W Cc Physician Male 1
188 Other Digestive System Diagnoses Age >17 W Cc SNF Female 1
191 Pancreas, Liver & Shunt Procedures W Cc Hospital Male 9
202 Cirrhosis & Alcoholic Hepatitis Physician Female 15
202 Cirrhosis & Alcoholic Hepatitis Other Male 1
202 Cirrhosis & Alcoholic Hepatitis Emerdept Male 24
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continued
Adm
DRG DRG Title Source Gender LOS
205 Disorders Of Liver Except Malig,Cirr,Alc Hepa W Cc Physician Male 20
331 Other Kidney & Urinary Tract Diagnoses Age >17 W Cc  Physician Male 44
357 Uterine & Adnexa Proc For Ovarian Or Physician Female 24
Adnexal Malignancy
416 Septicemia Age >17 Hospital Female 4
416 Septicemia Age >17 Other Male 2
449 Poisoning & Toxic Effects Of Drugs Age >17 W Cc Other Male 1
473 Acute Leukemia W/O Major O.R. Procedure Age >17 Physician Male 5
475 Respiratory System Diagnosis With Ventilator Support Physician Male 25
475 Respiratory System Diagnosis With Ventilator Support Physician Female 1
475 Respiratory System Diagnosis With Ventilator Support Hospital Female 1
475 Respiratory System Diagnosis With Ventilator Support Other Female 1
475 Respiratory System Diagnosis With Ventilator Support Hospital Female 21
475 Respiratory System Diagnosis With Ventilator Support Other Male 5
475 Respiratory System Diagnosis With Ventilator Support Hospital Female 8
475 Respiratory System Diagnosis With Ventilator Support Emerdept Female 10
475 Respiratory System Diagnosis With Ventilator Support Clinic Male 13
475 Respiratory System Diagnosis With Ventilator Support SNF Female 1
475 Respiratory System Diagnosis With Ventilator Support Emerdept Male 5
475 Respiratory System Diagnosis With Ventilator Support Clinic Female 4
475 Respiratory System Diagnosis With Ventilator Support Emerdept Male 3
475 Respiratory System Diagnosis With Ventilator Support Other Female 12
475 Respiratory System Diagnosis With Ventilator Support Other Female 5
483 Trac W Mech Vent 96+Hrs Or Pdx Except Face, Hospital Female 30
Mouth & Neck Dx
483 Trac W Mech Vent 96+Hrs Or Pdx Except Face, Hospital Male 19
Mouth & Neck Dx
483 Trac W Mech Vent 96+Hrs Or Pdx Except Face, Hospital Male 22
Mouth & Neck Dx
483 Trac W Mech Vent 96+Hrs Or Pdx Except Face, Physician Female 46
Mouth & Neck Dx
483 Trac W Mech Vent 96+Hrs Or Pdx Except Face, Other Female 28

Mouth & Neck Dx

2. Review the data in Table 1-A-2 and answer the questions that follow.
a. What is the case fatality rate for AIDS for the years 1981 through 1995?
b. The midyear population for the state of Ohio in 1994 was 11,140,950. What is the in-

cidence rate for AIDS for 1994?



34 CHaPTER 1  CommonLy Usep FREQUENcY MEASURES IN HEALTH CARE

Table 1-A-2 AIDS Cases in Ohio 1981-1995

Year of Diagnosis Total No. of New Cases Cases Dead
1981 2 2
1982 7 7
1983 27 25
1984 58 56
1985 120 113
1986 211 198
1987 401 374
1988 540 482
1989 631 537
1990 682 577
1991 763 644
1992 775 587
1993 1935 908
1994 947 259
1995 259 63

Source: Department of Health HIV/AIDS Surveillance Program, Columbus, OH,
www.odh.state.oh.us.

3. Review the data in Table 1-A-3 and answer the questions that follow.

a. What is the male-to-female ratio for AIDS in Ohio? In the United States?

b. Out of the total number of AIDS cases in Ohio, what proportion are women? Of the
total cases in the United States, what proportion are women?

c. What proportion of the total AIDS cases in Ohio are ages 30 to 39?7 What proportion
in the United States are ages 30 to 39?

d. Calculate the proportion of AIDS cases in Ohio by race. Calculate the proportion of
AIDS cases in the United States by race.

e. How do the preceding ratios and proportions, Ohio versus United States, compare?
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Table 1-A-3 Ohio AIDS Cases by Age, Race, and Sex,
as of June 30, 2003; U.S. AIDS Cases 1981-1999

Demographics Total Ohio Total U.S.
Age

<13 96 8,718
13-19 72 3,725
20-24 331 25,904
25-29 776 97,676
30-39 4,686 329,066
40-49 5,362 190,087
50-64 2,254 68,196

65+ 217 10,002
Subtotal 13,794 733,374
Race/Ethnicity
White 6,943 318,354
Black 5,742 272,881
Hispanic 642 133,703
Other 74 7,479
Unknown 393 957
Subtotal 13,794 733,374
Sex
Male 10,766 609,329
Female 2,634 124,045
Unknown 394
Subtotal 13,794 733,374

Source: Ohio HIV/AIDS Statistical Summary, HIV Infection and AIDS
Cases Diagnosed through June 2003, Ohio Department of Health,
www.odh.state.oh.us

US DHHS, Public Health Service, CDC, National Center for HIV, STD, and
TB Prevention, AIDS Public Information Data Set, CDC WONDER On-line
Database, wonder.cdc.gov

4. Complete the columns in Table 1-A-4.

a. Compute the age-specific death rates for whites and blacks.

b. Compute the 2001 overall crude death rate for the state of California and the crude
death rates for whites and blacks.

¢. Compute the 2001 age-adjusted death rates for whites and blacks in the state of Cal-
ifornia using the standardized method.

d. Is there a difference between the age-adjusted mortality rates for whites and blacks?
If so, explain the reason for the discrepancy.
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Table 1-A-4 Age-Specific Mortality Rates, State of California, 2001

(h) (i)
Expected Expected

(9) No. of No. of

(c) (d) (f) Comb. Deaths Deaths

(a) (b) White Black (e) Black Pop. Whites Blacks

Age White Pop. Deaths ASDR Pop. Deaths ASDR Total (9 X c) (g x 1)
<1 428,238 2,131 33,774 435 462,012
1-4 1,565,447 413 170,587 80 1,736,034
5-9 2,120,923 291 240,189 45 2,361,112
10-14 2,084,668 311 244,031 55 2,328,699
15-19 1,929,503 1,129 208,006 185 2,137,509
20-24 1,916,977 1,569 186,458 274 2,103,435
25-34 4,123,447 3,399 373,455 644 4,496,902
35-44 4,318,242 7,394 415,178 1,258 4,733,420
45-54 3,554,132 13,766 304,914 2,339 3,859,046
55-64 2,201,539 18,939 176,743 2,647 2,378,282
65-74 1,531,032 33,192 11,657 3,517 1,542,689
75-84 1,119,160 59,115 62,592 3,998 1,181,752
85+ 395,512 57,200 20,542 2,906 416,054
Total 27,288,820 198,849 2,448,126 18,383 29,736,946

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), CDC
On-line Database, wonder.cdc.gov.

5. Calculate the odds ratio for the data in Table 1-13. Interpret the results.

6. At Critical Care Hospital, the complication rate for hip replacement surgery is 8.96%.
The relevant statistics appear in Table 1-A-5. The administrative staff at the hospital is
concerned that the hospital complication rate does not compare favorably with the over-
all complication rate of all patients with hip replacement surgery in the county. The com-
plication rate for the county is 5.5%. The county complication rate for patients age 65 or
older is 8.0%; for those under age 65, the complication rate is 3.0%. Using the indirect
method of standardization, calculate the complication rate for the hospital that has been
adjusted for age.

Table 1-A-5 Critical Care Hospital, Hip Replacement Surgery

No. of Patients with Complication
Age Group No. of Patients Complications Rate
= 65 170 17 10.00%
< 65 42 2 4.76%

Total 212 19 8.96%
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The overall mortality rate for patients who have had a cerebrovascular accident (CVA) is
15.8% at CGH. You have been asked to compare the hospital’s mortality rate to that of
the state. Using the data provided in Table 1-A-6, calculate the age-adjusted death rate
and the standard mortality ratio (SMR) for the hospital, using the indirect method of
standardization. Explain the results.

Table 1-A-6 Mortality Rates for CVAs, State versus City General Hospital

Severity of State Mortality = Hospital Discharges

lliness Rate for CVA Observed Deaths  Expected Deaths
1 4.2 55 2
2 5.9 116 8
3 7.8 195 20
4 20.9 147 29
5 34.6 62 32
575 91

INTERNET ACTIVITY

An important skill for the health information management professional is the ability to
search the Internet for information. This can be particularly useful when one is searching for
comparative information. This activity is designed to provide experience working with an
on-line interactive database and to provide experience analyzing and summarizing the re-
sults of data queries.

Instructions

1.

The Utah Department of Health has an on-line interactive database that is available
for public use. The database is constructed from the Uniform Hospital Discharge Data
Set (UHDDS). Information on DRGs and ICD-9-CM codes (International Classification
of Diseases, 9th revision, Clinical Modification) can be obtained through queries. The
public data set contains data for the years since 1992. The website address
ishlunix.hl.state.ut.us/.

. Once at the site, click “Descriptive Statistics.” This should take you to the Utah Hospital

Discharge Query System. The Utah External Injury Data System will also be accessed.

. Answer the questions that follow. An alternative website is the Centers for Disease Con-

trol and Prevention’s data sets at http://wonder.cdc.gov.
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Questions

1.

For the diagnosis of acute myocardial infarction, ICD-9-CM category 410:

a. Prepare a bar graph that displays the number of deaths due to AMI by year, 1998
through 2002.

b. Prepare a line graph that displays the number of deaths by gender for the years 1998
through 2002. What are your conclusions?

c. Prepare a table that displays the number of deaths due to AMI by age group. Use the
table to prepare a bar graph of the same information.

d. Prepare a bar graph that displays the average length of stay by gender for the years
1992 through 2002. What are your conclusions after reviewing the data?

e. Prepare a line graph that displays the median charges by year, 1992 through 2002.
What does the graph indicate?

. How many patients with coronary atherosclerosis, ICD-9-CM category 414, had a coro-

nary artery bypass graft (CABG) procedure, ICD-9-CM procedure category 36?

a. Prepare a line graph that displays both the total number of discharges with a principal
diagnosis of coronary atherosclerosis and the total number with the CABG procedure.

b. Construct a bar graph that displays average length of stay, by year and gender, for pa-
tients with coronary atherosclerosis and CABG procedure for the years 1998-2002.

c. Construct a bar graph that displays the number of CABG procedures, by gender, for
the years 1998-2002. What are your conclusions?

Determine the number of patient discharges with pathological fractures, ICD-9-CM code
733.1, by year, 1998 through 2002, and by gender. You are interested in patients aged 65
years and over. Prepare a line graph displaying the number of discharges by year and by
gender. Discuss your findings.

In table form, how many patients were discharged, by year, 1998 through 2002, and by
gender, with malignant neoplasms of the trachea, bronchus, and lung? Use the selection
option that is available on the database. Prepare a bar or line graph that displays the per-
centage of patients, by gender, who expired from these illnesses.

For ICD-9-CM code 185, for the years 1998 through 2002:

a. Prepare a bar graph or pie chart, by third-party payer, of men, aged 45 and older, dis-
charged with a diagnosis of prostate cancer.

b. Prepare a bar graph that displays the number of men, by age group, discharged with
prostate cancer.

c. Discuss your findings.

For patients discharged with pneumonia during the years 1998 through 2002 (use the se-

lection option that is available on the database):

a. Prepare a table that reports the average length of stay for patients discharged with pneu-
monia by year and by gender. Include only patients who are aged 65 years and older.

b. Prepare a bar or line graph to display your results.

c. Discuss your findings.
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Graphic Display of Data

KEY TERMS
Tables Pie chart
Table shell Histogram
Box head Frequency polygon
Stub Line graph
Cell Scatter diagram
Note
Source
Bar charts
Grouped bar chart
Stacked bar chart
100% component bar chart
LEARNING At the conclusion of this chapter, you should be able to:
OBJECTIVES 1. Define key terms.
2. Determine which graphic technique is appropriate for the type of

information to be conveyed.

Determine the appropriate graphic techniques for the various
scales of measurement.

Outline the essential components of tables.

Correctly prepare tables for one, two, three, and/or four variables.
Outline the principles for construction of bar charts and pie charts.
Differentiate between the following types of bar charts: one-
variable bar chart, grouped bar charts, stacked bar charts, and
100% component bar charts.

Correctly prepare bar charts and pie charts.

39



40 CHAPTER 2 GRrAPHIC DispLAY OF DATA

9. Correctly prepare the following types of graphs: histograms, fre-
quency polygons, line graphs, and scatter diagrams.
10. Differentiate between histograms and bar charts.
11. Differentiate between frequency polygons and line graphs.

The purpose of tables, charts, and graphs is to summarize and display data clearly and ef-
fectively. They are all means of summarizing quantities of information to the reader. Tables,
charts, and graphs offer the opportunity to analyze data sets and to explore, understand, and
present distributions, trends, and relationships in the data. The primary purpose of tables,
charts, and graphs is to communicate information about the data to the user.

Whether the graphic technique used is a table, chart, or graph, it should

« display the data

allow the viewer to think about what the data convey

avoid distortion of the data

encourage the reader to make comparisons

reveal data at several levels, from a broad overview to the fine detail

serve a reasonably clear purpose: description, exploration, tabulation, or decoration
be closely related to the statistical and verbal descriptions of the data set

CONSTRUCTION OF TABLES

A table is an orderly arrangement of values that groups data into rows and columns. Almost
any type of quantitative information can be grouped into tables. For example, we can use ta-
bles to display frequencies for such vital statistics as morbidity rates or hospital admission
and discharge data. Tables are useful for demonstrating patterns and other kinds of rela-
tionships. They also serve as a basis for more visual displays of data, such as graphs and
charts, where some of the detail may be lost. Because tables generally do not capture the in-
terest of the reader, they should be used sparingly.

Table Shells

Although data cannot be analyzed until they have been collected, it is useful to prepare a
table shell that shows how the data will be organized and displayed. It also helps one work
through the data collection process in advance to ensure that once the data have been col-
lected they can be analyzed in the manner desired. The basic shell for construction of tables
appears in Exhibit 2—-1. Table shells are tables that are complete except for the data. In sum-
mary, a table should be self-explanatory, even if it is taken out of its original context. A table
should convey all the information necessary for the reader to understand the data. Check the
table to be sure that
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e Itis a logical unit.

* It is self-explanatory. Ask yourself if the table can stand on its own if photocopied and
removed from its context.

« All sources are specified.

» Headings are specific and understandable for every column and row.

» Row and column totals are checked for accuracy.

e Cells are not left blank; enter “0” or “-”.

 Categories are mutually exclusive and exhaustive.

Exhibit 2-1 Table Shell

TITLE
Box Head Sex
Male Female Total
Age No. % No. % No. %
Stub Row Variable B S -
e S
<45 Column Variable
45-54 X’
55-64 l
65-74 l
75+ 2
Note:

Source: Adapted from Self-Instructional Manual for Cancer Registries, Book 7: Sta-
tistics and Epidemiology for Cancer Registries, p. 23, United States Department of
Health and Human Services, Public Health Service, National Institutes of Health, Na-
tional Cancer Institute.

Consideration should also be given to alignment of data in tables. Guidelines for aligning
text include the following: align text in a table to the left; text that serves as a column label
may be centered; numeric values should be aligned to the right. If the numeric values con-
tain decimals, they should be decimal-aligned. Some word processing and microcomputer
statistical software programs have features that assist in the formatting of tables. The essen-
tial components of a table are outlined in Exhibit 2-2.
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Exhibit 2-2 Essential Components of Tables

TITLE The title should be as complete as possible and should clearly relate the content of the
table. It should answer the following questions:

» What are the data? (e.g., counts, percentages)

* Who? (e.g., white females with breast cancer; black males with lung cancer)
» Where are the data from? (e.g., hospital, state, community)

* When? (e.g., year, month)

For example: Site distribution by Age and Sex of Cancer Patients upon First Admission
to General Hospital

BOX HEAD The box head contains the captions or column headings. The heading of each column
should contain as few words as possible but should explain briefly exactly what the data
in the column represent.

STUB The row captions are known as the stub. Items in the stub should be grouped to facilitate
interpretation of data. For example, group ages into five-year intervals.

CELL The box formed by the intersection of a column and a row.

Optional Items:

NOTE Anything in the table that cannot be understood by the reader from the title, box head, or
stub should be explained by notes. Notes contain numbers, preliminary or revised num-
bers, or explanations for any unusual numbers. Definitions, abbreviations, and/or quali-
fications for captions or cell names should be footnoted. A note usually applies to a
specific cell(s) within the table, and a symbol, such as ** or #, can be used to key the cell
to the note. If several notes are required, it is better to use small letters than to use sym-
bols for numbers. Note that numbers may be confused with the numbers within the table.

SOURCE If data from a source outside your research are used, the exact reference to the source
should be given. Indicating the source lends authenticity to the data and allows the reader
to locate the original source if more information is needed.

Source: Adapted from Self-Instructional Manual for Cancer Registries, Book 7: Statistics and Epidemiology for Cancer Registries, p. 24,
United States Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute.

A One-Variable Table

The most basic table is a frequency distribution with just one variable. The first column
shows the values or categories of the variable represented by the data, such as age or sex.
The second column shows the number of persons or events that fall into each category. A
third column may be added to show the percentage of persons or events in each category.
Because of rounding, column totals for percentages often add up to 99.9% or 100.1%. Even
when this occurs, the total given should be 100.0%, with a footnote explaining that the dif-
ference is due to rounding. An example of a one-variable table, which displays some hypo-
thetical admissions data, is presented in Table 2—1. The variable is sex, which is divided into
two mutually exclusive categories, male and female.
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Table 2-1 XYZ Hospital Admissions

by Sex

Sex Admissions %
Male 30 60.0%
Female 20 40.0%
Total 50 100.0%

Two- and Three-Variable Tables

We can use tables to display data that have more than one variable. Data can be tabu-
lated to show counts by two or three variables, such as age and sex. A two-variable table
that is cross-tabulated is usually called a two-by-two contingency table. In Table 2-2,
“lung cancer patients” is classified on two variables, race and sex; race is the row vari-
able and sex is the column variable. Contingency tables, which will be discussed in
greater detail in Chapter 9, are often used in calculating measures of association such as
chi square.

Table 2-2 XYZ Hospital, Lung Cancer
Patients by Race and Sex, 2004

Sex
Race Male Female Total
White 316 204 520
Black 35 15 50
Total 351 219 570

Tables 2-3 and 2-4 are examples of data classified on three and four variables. Because
tables classifying data on more than two variables can be quite confusing to the reader, they
should be avoided if at all possible.

In a three-way classification table, it sometimes becomes quite challenging to arrange
the data in a readable format. A multidimensional relationship must be shown in a two-
dimensional space. In Table 2-3, we have expanded the classification of the lung cancer
data to include not only race/ethnicity and sex but also geographic region. The row cate-
gories are first divided by geographic region, and then by race/ethnicity. In Table 2-4, a
three-way table, types of cancer are first divided by primary site and then classified by
race, and sex.
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Table 2-3 Age-Adjusted Rates by Geographic Location, Race/Ethnicity and Sex, Cancer

of the Colon and Rectum, 1997-2001

Sex
Geographic Region Race/Ethnicity Male Female
61.4 44.3
61.7 49.2
San Francisco-Oakland American Indian/Alaska Native 7.4 0.0
Asian or Pacific Islander 51.6 39.0
60.9 38.6
70.9 52.3
64.6 51.7
Connecticut American Indian/Alaska Native 18.3 60.1
Asian or Pacific Islander 60.2 6.0
71.7 52.0
69.2 48.6
D . 80.4 60.5
etroit American Indian/Alaska Native 22.6 12.9
Asian or Pacific Islander 47.6 271

Source: Ries, L.A.G., Eisner, M.P,, Kosary, C.L., Hankey, B.F., Miller, B.A., Clegg, L., Mariotto, A., Feuer, E.J., and
Edwards, B.K., (eds). SEER Cancer Statistics Review, 1975-2001. National Cancer Institute, Bethesda, MD,

http://seer.cancer.gov.

Table 2-4 Number of New Cancer Cases, 1997-2001, by Selected Primary Site, Race and Sex,

SEER Geographic Areas

Total

Site Total
Oral & Pharynx 18,688
Liver 10,395
Pancreas 18,790
Lung & Bronchus 105,298
Hodgkin’s
Lymphoma 5,101

Colon & Rectum 91,850

Whites

Male Female
9,917 4,973
4,468 2,263
7,424 7,575

46,518 39,645

2,345 1,968

37,348 36,926

1,888
1,081
2,116
11,314

505
9,744

Blacks

Male Female

1,329 559
759 322
996 1,120

6,815 4,499
277 228

4,118 4,626

Source: Ries, L.A.G., Eisner, M.P,, Kosary, C.L., Hankey, B.F., Miller, B.A., Clegg, L., Mariotto, A., Feuer, E.J., and Edwards,
B.K., (eds). SEER Cancer Statistics Review, 1975-2001. National Cancer Institute, Bethesda, MD, http://seer.cancer.gov.

CHARTS

Graphs and charts of various types are the best means for presenting data for quick visual-
ization of relationships. Graphs and charts emphasize the main points and analyze and clar-
ify relationships between variables that may otherwise remain elusive.
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Regardless of the type of graph or chart being prepared, several principles of construction
should be followed. First, it is important to avoid distortion of the data. To avoid distortion, the
representation of numbers on the graph should be directly proportional to the numerical quan-
tities that are being represented on the graph. It is also important to consider proportion and
scale. Graphs should accommodate the eye in that they should emphasize the horizontal. Graphs
should be greater in length than they are in height. The three-quarter high rule is a useful guide:
the height (y-axis) of the graph should be three-fourths the length (x-axis) of the graph. A longer
horizontal axis helps to point out the causal variable in more detail. Other helpful hints in prepar-
ing graphs or charts include spelling out abbreviations in a note so that misunderstandings are
avoided; using colors to help clarify groupings that may appear in the graph; and using both
upper- and lowercase letters in titles, as the use of all capital letters can be unfriendly to the eyes.

There are many types of charts. We will first discuss the construction of charts for data
that fall into categories.

Bar Charts
One-Variable Bar Chart

We can use bar charts to display data for one or more variables. Bar charts are appropriate for
displaying data that are categorical. The simplest bar chart is the one-variable bar chart. Each cat-
egory of the variable is represented by a bar. In Figure 2-1, the bar represents one variable—the
crude death rate for cancer of the trachea, bronchus, and lung—which is placed in categories by
years (1990 through 1998). There is one bar representing the crude death rate for each of the nine
years in the bar chart. Guidelines for construction of a bar chart are summarized in Exhibit 2-3.

Figure 2-1 Crude Death Rate by Year, Cancers of the Trachea, Bronchus, and Lung, ICD-9-CM Codes
162.0-162.9, 1990-1998

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention
(CDC), CDC On-Line Database, wonder.cdc.gowv.
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Exhibit 2-3 Guidelines for Constructing a Bar Chart

When constructing a bar chart, keep the following points in mind:

« Arrange the bar categories in a natural order, such as alphabetical

order, order by increasing age, or an order that will produce in-

creasing or decreasing bar lengths.

The bars may be positioned vertically or horizontally.

The bars should be of the same width.

The length of the bars should be in proportion to the frequency of

the event.

Avoid using more than three bars (categories) within a group of

bars.

» Leave a space between adjacent groups of bars but not between
bars within a group.

« Code different variables by differences in bar color, shading, cross-
hatching, and so on. Include a legend that interprets your code.

Source: Adapted from Self-Instructional Manual for Cancer Registries, Book 7: Statistics
and Epidemiology for Cancer Registries, p. 251, United States Department of Health and
Human Services, Public Health Service, National Institutes of Health, National Cancer
Institute.

The length or height of each bar is proportional to the number of persons or events in the
category. The presentation of the information in this bar chart makes it easy to see at a
glance that the crude death rate was the greatest in 1993 and the least in 1998. One can also
readily see that the crude death rate has been on the decline since 1995.

Bar charts may be drawn either horizontally or vertically. Figure 2-2 presents the same
information that appears in Figure 2-1, but in a horizontal format. Personal preference de-
termines the format used.

It is not uncommon to confuse a bar chart with a histogram. A bar chart is used to display
data that fall into groups or categories, whereas histograms are used to illustrate frequency
distributions of continuous variables. In a bar chart, the bars that represent the categories of
the variables are separated, whereas in a histogram the bars are joined. A histogram is used
to display the frequency distribution of a continuous variable, such as age. A bar chart is
used to display the frequency distribution of a variable that is discrete with noncontinuous
categories such as race or sex.

Computer software makes it easy to present bar charts in either two- or three-dimensional
form. When bars are presented in three-dimensional form, it is sometimes difficult for the
reader to estimate the true height of the bar. In a 3-D bar chart, the back edges of the bar are
higher than the front edge, as in Figure 2—3. To make sure that the reader correctly interprets
the bar, label the data points at a point on the bars, as shown in Figure 2-3.
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Figure 2-2 Crude Death Rate by Year, Cancers of the Trachea, Bronchus, and Lung, ICD-9-CM Codes
162.0-162.9, 1990-1998

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention
(CDC), CDC On-Line Database, wonder.cdc.gowv.
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Figure 2-3 Crude Death Rate by Year, Cancers of the Trachea, Bronchus, and Lung, ICD-9-CM Codes
162.0-162.9, 1990-1998

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention
(CDC), CDC On-Line Database, wonder.cdc.gowv.
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Grouped Bar Charts

A grouped bar chart is used to display information from tables containing two or three
variables. An example of a grouped bar chart can be demonstrated by the variable sex, which
has two categories: male and female. Bars within a group are usually joined; in this case,
the grouping is by year. The number of bars within a grouping should be limited to three.
There must also be a legend to indicate what categories the bars represent. In viewing the
grouped bar chart in Figure 2—-4, we can easily see that proportionately, more women than
men were admitted to the hospital for the years 2001 and 2002.

Figure 2—-4 Percentage of Hospital Admissions by Sex, 2001 and 2002

10% +—

Percentage of hospital admissions

0%

Male Female Male Female
2001 2002

Stacked Bar Charts

In a stacked bar chart, bar segments for each data category are stacked like building blocks
on top of one another to form a single bar. In a stacked bar chart, the bar represents the to-
tal number of cases that occurred in a category; the segments of the bar represent the fre-
guency of cases within the category. As an example, the data that appear in Table 2-5 are
presented as a stacked bar chart in Figure 2-5. Each bar in the stacked bar chart represents
the total number of cancer cases for a specific primary site; the bar segments represent the
number of males and the number of females affected within the total number of cases.

Stacked bar charts should be used with caution, since they are very difficult to interpret.
Except for the bottom category, the categories do not rest on a flat baseline. What this means
is that where one category of the variable ends, the next begins. Each category rides the
bumps of those below it.
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From the stacked bar graph in Figure 2-5, it can be readily seen that except for cancer of
the colon/rectum and pancreas, men are affected more often than women. But the exact
number of cases for women in each category is difficult to determine. Stacked bar charts are
deceptive, so they are often used to exaggerate or hide information.

Table 2-5 Number of Deaths by Selected Primary Cancer
Sites, 1997-2001

Primary Site Male Female Total
Bronchus/lung 452,846 318,281 771,127
Colon/rectum 141,124 144,007 285,131
Pancreas 70,155 74,069 144,224
Leukemia 57,916 47,037 104,953
Bladder 40,211 19,265 59,476
Kidney 35,649 22,059 57,708
Oral & Pharynx 25,532 13,005 38,537
Melanoma 23,119 13,727 36,846
Larynx 15,069 4,080 19,149
Hodgkin’s Disease 3,723 3,044 6,767
Total 865,344 658,574 1,523,918

Source: Ries, L.A.G., Eisner, M.P., Kosary, C.L., Hankey, B.F., Miller, B.A.,
Clegg, L., Mariotto, A., Feuer, E.J., and Edwards, B.K., (eds). SEER Cancer
Statistics Review, 1975-2001. National Cancer Institute, Bethesda, MD,
http://seer.cancer.gov.

Figure 2-5 Number of Deaths by Selected Primary Cancer Sites, 1997-2001

Source: SEER Cancer Statistics Review, 1975-2001. National Cancer Institute, Bethesda, MD, http://seer.
cancer.gov.
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100% Component Bar Charts

The 100% component bar chart is a variant of the stacked bar chart. In a 100% bar chart,
all of the bars are of the same height and show the variable categories as percentages of the
total rather than the actual values. Each bar is much like its own pie chart. A set of 100%
bar charts can be used instead of multiple pie charts. This is more advantageous because it
is easier to make a comparison between bars than between pies. Figure 2-6 presents the
same information that appears in Figure 2-5. The stacked bars for each year represent 100%
of the various types of cancer cases by sex. Each category of the sex variable is represented
in terms of a percentage, in one bar.

Figure 2—6 Percentage of Cancer Deaths by Selected Primary Sites by Sex, 1997-2001

Source: SEER Cancer Statistics Review, 1975-2001. National Cancer Institute, Bethesda, MD, http://seer.
cancer.gov.
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Pie Charts

A pie chart is an easily understood chart in which the sizes of the slices show the propor-
tional contribution of each part of the pie. We can use pie charts to show the component
parts of a single group or variable. To calculate the size of each slice of the pie, first de-
termine the proportion of the pie to be represented by each slice. Multiply the proportion
by 360—the total number of degrees in a circle. The result will be the size of each slice in
degrees.
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In the pie chart in Figure 2—-7, one slice of the pie, acute myeloid leukemia, represents
34% of the cases, or 34% of the pie. Within the pie chart, this slice of the pie equals
122.4° (360° X 0.34 = 122.4°). All other leukemia types represents 30% of the cases,
and the size of its respective slices is 108° (360° X 0.30 = 108°). One category of the
pie, chronic lymphoid leukemia, represents 20% of the cases, which is equivalent to 72°
(360° X 0.20 = 72°). The remaining slices of the pie represent chronic myeloid
leukemia, 9 percent and 32.4° of the pie, and acute lymphoid leukemia, 7 percent and
25.2° of the pie. The sum of the degrees for each slice of the pie is 360° (122.4° +
108° + 72° + 32.4° + 25.2° = 360°). The pie chart in Figure 2—7 demonstrates how the
whole pie is divided into segments. By convention, the largest slices of the pie begin at
12 o’clock, as in Figure 2—7. The slices of the pie should be arranged in some logical or-
der. In Figure 2-8, acute lymphoid leukemia appears in the 12 o’clock position. This is
an example where pie slices are arranged in alphabetical order rather than according to
magnitude.

It is not recommended to use pie charts to compare multiple distributions because
they are not optimal for comparing components for more than one group. When compo-
nents of more than one group are to be compared, a 100% component bar chart should
be used.

Figure 2-7 Leukemia Cancer Deaths by Type, 1997-2001, Ordering by Magnitude of Groupings

Source: SEER Cancer Statistics Review, 1975-2001. National Cancer Institute, Bethesda, MD, http://seer.
cancer.gov.
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Figure 2-8 Leukemia Cancer Deaths by Type, 1997-2001, Alphabetical Order

Source: SEER Cancer Statistics Review, 1975-2001. National Cancer Institute, Bethesda, MD, http://seer.
cancer.gov.
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Histograms

Thus far we have discussed graphing data that are in categorical or discrete form. The tech-
niques that will be discussed next are appropriate for data that are continuous in nature.

A histogram is appropriate for displaying a frequency distribution for one continuous
variable. The frequency distribution can be presented in either number or percentage form.
A histogram consists of a series of bars, each having as its base one class interval and as its
height the number (frequency) or percentage of cases in that class. A class interval is a type
of category; a class interval can represent one value in a frequency distribution (Figure 2-9)
or a group of values in a frequency distribution (Figure 2-10).

In this type of graph, there are no spaces between the bars, since the data points repre-
sented are continuous. That is, a data point may fall anywhere in the area covered by the
graph. The sum of the heights of the bars represents the total number, or 100% of the cases.
When the distribution of the data needs to be emphasized more than the actual values, use
a histogram. An example where the class interval represents a single value in a frequency
distribution is displayed in Figure 2-9. Each bar of the histogram represents a single age, in
contrast to Figure 2-10, where each bar represents an age group.
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Figure 2-9 DRG 416, Septicemia, Histogram of Patients Aged 80-89

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention
(CDC), CDC On-Line Database, wonder.cdc.gov.
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Figure 2-10 Deaths Due to Breast Cancer, ICD-9-CM Codes 174.0-174.9, by Age, 1998

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention
(CDC), CDC On-Line Database, wonder.cdc.gov.
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Age at death for breast cancer is the variable represented in the histogram in Figure 2-10.
The values at the bottom of the x-axis are the midpoints of the class intervals for the fol-
lowing age groups:

Age Group Midpoint of Class Interval

25-34 29.5
35-44 39.5
45-54 49.5
55-64 59.5
65-74 69.5
75-84 79.5
85+ 89.5

In the histogram, it is clear that there are two age groups that account for most of the
deaths due to breast cancer: 65-74 and 74-84.

Frequency Polygons

A frequency polygon can be used as an alternative to the histogram. Like a histogram, a
frequency polygon is a graph of a frequency distribution. To construct a frequency polygon,
simply join the midpoints at the top of each bar in the histogram (4.5, 14.5, 24.5, and so on).
The advantage of the frequency polygon over the histogram is that several frequency poly-
gons can be plotted on the same graph for comparison purposes. Frequency polygons also
are easy to interpret.

When constructing a frequency polygon, make the x-axis longer than the y-axis to avoid
distorting the data. The frequency of the observations is always placed on the y-axis, and the
scale of the variables under study is placed on the x-axis. Frequency values are plotted at the
midpoint of each class interval.

The frequency polygon in Figure 2-11 plots the same data that appear in the histogram
in Figure 2-10. Since the x-axis represents the total distribution, the line always starts and
ends with zero.

The frequency polygon tells us that the number of deaths due to breast cancer reaches its
peak in the age groups 65 to 74 and 75 to 84. A frequency polygon presents this pattern with
more clarity than the histogram.

Line Graphs

A line graph is often used to display time trends and survival curves. The x-axis shows the
unit of time from left to right, and the y-axis measures the values of the variable being plotted.

A line graph does not represent a frequency distribution. A line graph consists of a line
connecting a series of points on an arithmetic scale. Like all graphs, it should be designed
so that it is easy to read. The selection of proper scales, complete and accurate titles, and in-
formative legends is important. If a graph is too long and narrow, either vertically or hori-
zontally, it has an awkward appearance and may exaggerate one aspect of the data. The
upward trend for median charges for septicemia patients in the state of Utah is displayed
Figure 2-12. The line graph is especially useful when there are a large number of values to
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Figure 2-11 Deaths Due to Breast Cancer, ICD-9-CM Codes 174.0-174.9, by Age, 1998

Source: United States Department of Health and Human Services, Centers for Disease Control and Prevention
(CDC), CDC On-Line Database, wonder.cdc.gov.
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Figure 2-12 DRG 416, Septicemia Age = 17, Median Charges, State of Utah, 1998-2002
Source: Utah Inpatient Hospital Discharge Dataset, Utah Office of Health Care Statistics, www.health.state.ut.us.
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be plotted; that is, when you have a continuous variable with an unlimited number of possi-
ble points. It also allows the presentation of several sets of data on one graph.

Either actual numbers or percentages may be used on the y-axis of the line graph. Use
percentages on the y-axis when more than one distribution is to be shown on one graph.
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A percentage distribution allows comparisons between groups where the actual totals are
different.

If more than one set of data is plotted on the same graph, different types of lines (solid or
broken) should be used to distinguish between the lines. The number of lines should be kept
to a minimum—a line graph can soon become too cluttered. Each line should be identified
in a legend or on the graph itself.

There are two kinds of time-trend data: (1) point data, which reflect an instant in time,
and (2) period data, which cover an average or total over a specified period of time, such as
a one-year or five-year time frame. In point data, the scale marker on the x-axis indicates a
particular point in time, such as one, two, or three years of survival. On the other hand, in
plotting of period data, the horizontal scale lines are used to indicate the interval limits, and
the values are plotted at the midpoint at each interval. For example:

Year of Diagnosis Midpoint of Interval
1986-1988 1987
1989-1991 1990
1992-1994 1993
1995-2000 1997.5

Table 2—6 presents an example of point data that are graphed in Figure 2-13. Other ex-
amples are presented in Table 2-7 and Figure 2-14.

Figure 2-13 Relative Survival Rates by Year of Diagnosis for Kidney and Renal Pelvis Cancer, 1992-1996

Source: Miller, B.A., Clegg, L., Mariotto, A., Feuer, E.J., and Edwards, B.K., (eds). SEER Cancer Statistics Re-
view, 1975-2001, National Cancer Institute, Bethesda, MD, http://seer.cancer.gov.
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Table 2-6 Survival Rates by Year of Diagnosis, Kidney and Renal Pelvis Cancer,

1992-1996

Years of Survival 1992 1993 1994 1995 1996
1 77.4 76.7 77.0 77.5 77.5
2 69.2 711 70.0 70.3 70.9
3 66.6 67.4 67.5 66.3 67.9
4 63.7 64.1 65.9 64.6 65.1
5 61.7 62.3 63.4 62.9 63.7

Source: Ries, L.A.G., Eisner, M.P,, Kosary, C.L., Hankey, B.F., Miller, B.A., Clegg, L., Mariotto, A., Feuer,
E.J., and Edwards, B.K., (eds). SEER Cancer Statistics Review, 1975-2001. National Cancer Institute,
Bethesda, MD, http://seer.cancer.gov.

Figure 2-14 Five-Year Survival Rates for Kidney and Renal Pelvis Cancer for Patients Diagnosed 1986-1988,
1989-1991, 1992-1994, 1995-2000

Source: Miller, B.A., Clegg, L., Mariotto, A., Feuer, E.J., and Edwards, B.K., (eds). SEER Cancer Statistics Re-
view, 1975-2001, National Cancer Institute, Bethesda, MD, http://seer.cancer.gov.
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Table 2-7 Five-Year Survival Rates for Kidney and Renal Pelvis Cancer for Patients
Diagnosed 1986-1988, 1989-1991, 1992-1994, 1995-2000

Race
Year of Diagnosis Midpoint of Interval Total Whites Blacks
1986-1988 1987 57.0 57.6 53.6
1989-1991 1990 60.1 60.8 58.1
1992-1994 1993 62.5 63.1 60.0
1995-2000 1997.5 63.9 63.9 63.5

Source: Ries, L.A.G., Eisner, M.P,, Kosary, C.L., Hankey, B.F., Miller, B.A., Clegg, L., Mariotto, A., Feuer, E.J., and
Edwards, B.K., (eds). SEER Cancer Statistics Review, 1975-2001. National Cancer Institute, Bethesda, MD,
http://seer.cancer.gov.
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Scatter Diagrams

A scatter diagram, or scatter plot, is a graphic technique used to display the relationship
between two continuous variables. One variable is plotted on the x-axis and the other is plot-
ted on the y-axis. To create a scatter diagram, there must be a pair of values for every per-
son, group, or other entity in the data set, one value for each variable. Each pair of values is
plotted by placing a point on the graph where the two values intersect. To interpret a scatter
diagram, analyze the overall pattern of the plotted points. Plotted points that appear to fall
in a straight line indicate a linear relationship between x and y, whereas widely scattered
points indicate no relationship between x and y. Table 2—-8 presents hypothetical data of test
scores and the grade point averages of 10 students. Figure 2—15 is a scatter plot that depicts
the relationship between the two variables, test scores (x) and grade point average (y).

Table 2-8 Test Scores and Grade
Point Averages of 10 Students

Student Test Score (x) GPA (y)

1 24 1.5
2 61 3.5
3 30 1.7
4 48 2.7
5 60 3.4
6 32 1.6
7 19 1.2
8 22 1.3
9 41 2.2
10 46 2.7

Figure 2-15 Scatter Diagram of Hypothetical Test Scores and Grade Point Average
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The scatter diagram in Figure 2-15 indicates a strong linear relationship between the vari-
ables test scores and grade point average. Scatter diagrams are used to assist in interpreta-
tion of inferential statistics such as correlation and linear regression. We will discuss these
topics in Chapter 8.

CONCLUSION

Tables, charts, and graphs are effective methods of summarizing data and displaying data in
a clear, concise format. Tables are often used to display data, and they can be used to dis-
play data about one or more variables. An advantage of tables is that large amounts of data
can be displayed and summarized, as in a four-way table. However, if too much information
is included in a table, it can be confusing to the reader.

Bar charts or graphs are often used for displaying categorical data, but they are appropri-
ate for data that are continuous in nature. Bar charts allow for quick visualization of the vari-
able of interest. Relationships between two variables are also easily seen in a bar chart. Bar
charts may take the form of a simple bar chart, a grouped bar chart, a stacked bar chart, or
a 100% component bar chart. The form selected should be appropriate to the data and eas-
ily interpreted by the reader.

Pie charts are useful for displaying the parts of a whole. For example, we could display
the proportion of patients admitted by third-party payer, or the proportion of burn patients
admitted by severity of burn. Pie charts should be used to display proportions of one
nominal-level variable; pie charts are not appropriate for comparing distributions of two or
more variables.

Histograms and frequency polygons are used to display the frequency distribution of one
continuous variable. Histograms and frequency polygons represent 100% of the cases in a fre-
quency distribution; the shape of the distribution can be easily seen in these two types of graphs.

Line graphs are used to display trends in data; they are also used in survival analysis. A
line graph consists of a line connecting a series of points on an arithmetic scale. To avoid
distortion in the data, the graph should not be too long or too narrow. When constructing bar
graphs and line graphs, the three-quarters-high rule should be used as a guide to avoid data
distortion. Either actual numbers or percentages may be displayed in a line graph.
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Appendix 2-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.

r

The purpose of a table, chart, or graph is to communicate information to the data user.
What questions should be considered to accomplish this objective?

What questions should be answered in the title of a table, chart, or graph?
What points should be considered when constructing a bar chart?

Describe the differences between a stacked bar chart and a 100% component bar chart.

o o~

Differentiate between a bar chart and a histogram.

MULTIPLE CHOICE

1. You want to graph the average length of stay by sex and service for the month of April.
The best choice is to use a:
a. bar graph
b. histogram
c. line graph
d. pie chart

2. You want to graph the number of deaths due to prostate cancer for the years 1998 to
2002. The best choice is to use a:

. frequency polygon

. histogram

. line graph

. pie chart

o O oo

61
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3. A pie chart may be used to display the:
a. average length of stay by year
b. percentage of discharges by third-party payer
c. number of discharges per year and third-party payer
d. number of patients discharged by sex and service

4. A histogram may be used to display:
a. discharges by age
b. discharges by third-party payer
c. discharges by service
d. discharges by sex

5. You want to display the number of discharges by sex and service for 1999. The best
choice is to use a:
a. bar chart
b. cluster line graph
c. histogram
d. line graph

PROBLEMS

Prepare the appropriate charts and graphs for the following problems. Include a title for each
and identify the data source when indicated.

1. The admissions data in Table 2-A-1 compare actual admissions by hospital service with
the budgeted number of hospital admissions for the month of January for Critical Care
Hospital. Using computer graphic software, construct a bar chart that compares budgeted
admissions with actual admissions. Write a short summary of the results.

Table 2-A-1 Admissions Report for January

Hospital Service Budgeted Admissions  Actual Admissions
Medicine 769 728
Surgery 583 578
OB/GYN 440 402
Psychiatry 99 113
Physical Medicine and Rehab 57 48
Other Adult 178 191
Newborn 312 294

2. Using the data in Table 2-A-2, prepare a pie chart for January patient days by service for
Critical Care Hospital.



Table 2-A-2 Patient Days by Service

Hospital Service Patient Days
Medicine 4,436
Surgery 4,036
OB/GYN 1,170
Psychiatry 1,223
Physical Medicine and Rehab 1,318
Other Adult 688
Newborn 1,633

Problems

63

3. Table 2-A-3 contains length-of-stay data by service for the month of January for Criti-
cal Care Hospital. Construct a stacked bar chart that compares actual average length of
stay with the budgeted average length of stay.

Table 2-A-3 Average Length of Stay (ALOS) by Service

Hospital Service Budgeted ALOS  Actual ALOS
Medicine 6.39 6.09
Surgery 7.23 6.98
OB/GYN 3.22 2.91
Psychiatry 11.56 10.82
Physical Medicine and Rehab 22.98 27.46
Other Adult 3.93 3.60
Newborn 4.97 5.55

4. Organize the following statistics for the month of January into a table.

Critical Care Cancer Research Institute Statistics for January

Discharges Discharge Service Days
Medicine 198 Medicine
Surgery 152 Surgery
Gynecology 74 Gynecology
Otolaryngology 48 Otolaryngology
Average Length of Stay
Medicine 6.6
Surgery 6.2
Gynecology 4.4

Otolaryngology 6.0

1,313
947
328
290



64 CHAPTER 2 GRrAPHIC DispLAY OF DATA

5. Exhibit 2-A-1 displays the lengths of stay for 80 patients at the Critical Care Cancer Re-

search Institute. Construct a histogram of these data.

Exhibit 2-A-1 Lengths of Stay for 80 Patients
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6. The average charges for malignant neoplasms of the large intestine and colon and aver-
age charges for malignant neoplasms of the trachea, bronchus, and lung appear in Table
2—-A-4. Prepare a line graph that compares average charges for both malignancies.

Table 2-A-4 Average Total Charges, Cancers of the Colon and

Lung, State of Utah, 1995-2002

Year

Cancer of the Trachea,
Bronchus, and Lung

Cancer of the
Colon and Rectum

1995
1996
1997
1998
1999
2000
2001
2002

$13,364
$15,403
$14,958
$15,232
$16,331
$19,618
$21,216
$22,256

$15,275
$14,622
$16,511
$16,659
$19,633
$20,424
$21,646
$22,362

Source: Utah Inpatient Hospital Discharge Dataset, Utah Office of Health Care Statis-

tics, www.health.state.ut.us.

7. Review the data in Table 2-4. Determine the percentage of total male and female cancer

cases for each site. Prepare a bar chart to display your results.




CHAPTER 3

Introduction to Measurement

KEY TERMS
Measurement Kappa coefficient
Validity Timeliness
Content validity Scales of measurement
Construct validity Nominal
Criterion-related validity Ordinal
Sensitivity Ratio
Specificity Interval
Predictive value Continuous variable
Reliability
Stability
Internal consistency
Interrater agreement
LEARNING At the conclusion of this chapter, you should be able to:
OBJECTIVES

1.
2.

3.

~

Define key terms.

Relate the importance of validity and reliability to the measurement
process.

Differentiate between the following aspects of validity: content,
construct, and criterion related.

Differentiate between the following aspects of reliability: stability,
internal consistency, and interrater agreement.

Determine the sensitivity, specificity, and predictive value of a test.
Compare and contrast the following scales of measurement: nomi-
nal, ordinal, ratio, and interval.

Classify variables to the scales of measurement.

Identify variables as either discrete or continuous.

65
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WHAT IS MEASUREMENT?

In the daily operations of any organization, whether in business, manufacturing, or health
care, data are collected for decision making. To be effective, decision makers must have
confidence in the data collected. Confidence requires that the data collected be accurate,
timely, and reliable. Assurance of these aspects of data quality is what the measurement
process is about. Our discussion of analysis of clinical data in health care begins with the
topic of measurement. We cannot accurately collect, analyze, and make conclusions re-
garding clinical data without an understanding of the measurement process. In measure-
ment, we are concerned with measuring an attribute or property of a person, object, or
event according to a particular set of rules. In some cases, measurement may be direct, as
when we are using a yardstick to measure the property “width of a desk” (object). How-
ever, in health care we do not always have the ability to measure persons, objects, or
events directly. For example, “quality of care” cannot be measured directly with a yard-
stick or any other measuring device. Consequently, an indirect measure must be
developed.

Whether we are dealing with direct or indirect measures, the result of the measurement
process is numbers, and there must be a set of rules for assigning numbers to the objects
being measured. The measurement process requires rigorous definition of what will be
collected, and the method by which it will be collected, so that the resulting numbers will
be meaningful, accurate, and informative. The advantage of standardizing the process is
that the results are the same regardless of who is doing the data collection. The resulting
uniformity also allows for comparisons between and within institutions. Through mea-
surement, one creates data that can be analyzed using statistical techniques, and that can
be presented as meaningful information. Through the measurement process, we transform
data into information.

To illustrate, consider the process by which the data for the Caesarean section (C-
section) rate is collected. The C-section rate is often used as a performance indicator for
hospital obstetric services, especially by managed care plans. A low C-section rate is
desirable, since C-sections are more expensive than vaginal deliveries, and there is a
longer recovery time for the patient. The first step in the process is to define C-section
rate, the event to be measured. Now we must consider the properties that characterize this
event—in other words, what data will be collected? The procedure for measuring this
event is presented in Exhibit 3-1. As you can see, calculation of the C-section rate is a
straightforward process.

However, quantifying some of the performance indicators developed by the Joint Com-
mission on Accreditation of Healthcare Organizations (Joint Commission) and the
Agency for Healthcare Research and Quality (AHRQ) is not always so easily accom-
plished. Since some performance indicators cannot be directly measured, we must use
some attribute that is considered to represent the presence or absence of the attribute of
interest—an indirect measure. As an analogy, consider the personal attribute of intelli-
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Exhibit 3-1 Measurement of Caesarean Section Rate

Caesarean Section Rate (event): The ratio during any given time
period of surgical deliveries (Caesarean sections) to the total
number of deliveries.

Data To Be Collected (Properties):

1. Total number of Caesarean sections performed for a given
period
2. Total number of deliveries for the period

Data Sources:

1. Medical records of discharged obstetrical patients for the
period

2. Daily discharge reports for the period

3. Disease and operations indexes of the International
Classification of Disease, 9th Revision, Clinical
Modification (ICD-9-CM)

4. Labor and delivery room logs

Total no. of Caesarean sections for period
Calculation: — - X 100
Total no. of deliveries for same period

gence. Intelligence is a personal attribute that cannot be directly measured with a yard-
stick or with any type of device; instead it is indirectly measured through a standardized
1Q test, which consists of questions that are assumed to be representative of intelligence.

Exhibit 3-2 outlines the procedure for collecting data on the performance indicator
“esophageal resection mortality rate.” This is a performance indicator that measures out-
come. The occurrence of this event is considered an indicator of an undesirable outcome
and should be avoided. But in calculating the mortality rate, we must first decide who will
be counted. Do we count everyone who had an esophageal resection? Do we count only
those admitted for esophageal cancer? Do we count those who were diagnosed with
esophageal cancer after admission? Standardization of the process helps ensure that
everyone is counting the same type of cases. As you can see in Exhibit 3-2, we are inter-
ested in counting patients who have a principal or secondary diagnosis of esophageal can-
cer with resection of the esophagus. This occurrence, to be measured, must be rigorously
defined, and procedures for data collection must be strictly followed.



68 CHAPTER 3 INTRODUCTION TO MEASUREMENT

Exhibit 3-2 Example of Measurement of An Inpatient Quality Indicator

Measure: Esophageal Resection Mortality Rate
Type of Measure: Provider level, Mortality indicator for Inpatient Procedures (outcome)

Rationale: Esophageal cancer surgery is a rare procedure that requires technical proficiency, and errors
in surgical technique or management may lead to clinically significant complications such as sepsis,
pneumonia, anastomotic breakdown, and death.

Relationship to Quality: Better processes of care may reduce mortality for esophageal resection, which
represents better quality care.

Definition: Number of deaths per 100 patients with discharge procedure code of esophageal resection.
Numerator: Number of deaths with a code of esophageal resection in any procedure field.

Denominator: Discharges with ICD-9-CM codes of 42.40 through 42.42 in any procedure field and a di-
agnosis code of esophageal cancer in any field.

Exclude patients transferring to another short-term hospital, MDC 14 (pregnancy, childbirth, and
puerperium), and MDC 15 (newborns and neonates).

Face Validity: Does the indicator capture an aspect of quality that is widely regarded as important and
subject to provider or public health system control?

The primary evidence for esophageal resection mortality as an indicator arises from the volume-
outcome literature. The causal relationship between hospital volume and mortality is unclear, and the
differing processes that may lead to better outcomes have not been identified.

Precision: Is there a substantial amount of provider or community level variation that is not attributable
to random variation?

Esophageal resection is a relatively uncommon procedure. Patti et al.* noted that most hospitals per-
form 10 or fewer procedures during a 5-year period. The precision of this indicator may be improved
by using several years data.

Construct Validity: Does the indicator perform well in identifying true (or actual) quality of care
problems?

There is no evidence for the construct validity of esophageal resection beyond the volume-outcome
relationship.

*Patti, M.G., Corvera, C.U., Glasgow, R.E., et al. A hospital’s annual rate of esophagectomy influences
the operative mortality rate. J Gastrointestinal Surg 1998, 2(2): 186-92.
Source: AHRQ Guide to Inpatient Quality Indicators: Quality of Care in Hospitals—Volume, Mortality, and Utilization. United

States Department of Health and Human Services, Agency for Healthcare Research and Quality, June 2002, Revision 2, September 4,
2003, www.ahrg.gov

VALIDITY

Accuracy in measurement cannot happen without validity. The measuring instrument,
whether a ruler, an 1Q test, or a survey instrument, is considered valid if it measures what it
is intended to measure and for the intended purpose. A ruler or scale is a direct measure. In
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health care, because we cannot measure quality with yardsticks and scales, quality is often
assessed through indirect measures.

As an example, the quality measure “Diabetes mellitus: hospital admission rate for long-
term complications” developed by AHRQ is displayed in Exhibit 3-3. This is a community
measure that focuses on the prevention of “hospital admissions for ambulatory care-
sensitive conditions.” Effective management of these patients in an ambulatory setting may
prevent hospitalization for diabetes mellitus, a chronic condition. Thus, this performance
measure is serving as an indirect measure for access to a certain type of ambulatory care in
a given community. Inpatient admissions are serving as the proxy measure.

Exhibit 3-3 AHRQ Quality Indicator—Diabetes Mellitus: Hospital Admission Rate for
Long-Term Complications

Measure: Diabetes Mellitus: Hospital Admission for Long-Term Complications

Source: AHRQ quality indicators. Guide prevention quality indicators: hospital
admission for ambulatory care sensitive conditions.

Description: ~ This indicator assesses the number of admissions for long-term diabetes
per 100,000 population.

Rationale: Long-term complications of diabetes mellitus include renal, eye, neuro-
logical, and circulatory disorders. Long-term complications occur at some time in
the majority of patients with diabetes to some degree. Proper outpatient treatment
and adherence to care may reduce this incidence of long-term complications, and
lower rates represent better quality of care.

Numerator:  Discharges, age 18 years and older, with ICD-9-CM principal diagnosis
code for long-term complications of diabetes (renal, eye, neurological, circulatory,
or complications not otherwise specified). Patients transferring from another insti-
tution, MDC14 (pregnancy, childbirth, and puerperium) and MDC 15 (newborns
and neonates) are excluded.

Denominator: Population in Metropolitan Statistical Area (MSA) or county, age 18
years and older.
Source: AHRQ Guide to Inpatient Quality Indicators: Quality of Care in Hospitals—Volume, Mortality, and

Utilization. United States Department of Health and Human Services, Agency for Healthcare Research and
Quality, June 2002, Revision 2, September 4, 2003, www.ahrg.gov

To implement this performance measure, we must now ask what qualifies as a long-term
diabetic complication. Is each health care facility free to define what qualifies as a diabetic
complication? Are both Type I and Type Il diabetics to be included? What about complica-
tions of gestational diabetes? It should become obvious that if we are to have valid data,
qualifying complications must be rigorously defined. Without rigorous definition of the
measure, consistent, comparable data will not result from the data collection process, and
confidence in the information will be lost. There are many types of validity, but we will limit
our discussion to three: content, construct, and criterion-related validity.
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Content validity is the adequacy of the sample, or the number of items used to represent
the content area being measured. It is the extent to which the instrument makes sense in
terms of the property or attribute being measured. This is often referred to as content valid-
ity. For example, if we are interested in assessing an individual’s competency in ICD-9-CM
coding, a sample of ten items from the vast domain of coding guidelines and principles is
inadequate. It is not logical that ten items could adequately measure an individual’s ability
to apply 1CD-9-CM guidelines and principles to all body systems. By its very nature, con-
tent validity is a matter of judgment and is evaluated by a panel of experts.

Construct validity is the ability of an instrument to measure the selected property or at-
tribute of interest. How do we know that an intelligence test actually measures intelligence,
or that a survey instrument on patient satisfaction actually measures patient satisfaction?
Construct validity is considered to be the link between theory and the property/attribute un-
der study. A statistical technique of factor analysis is often used to evaluate construct valid-
ity. In Exhibit 3-2, Esophageal Resection Mortality Rate, there is a statement regarding the
construct validity of this measure—*"there is no evidence for construct validity of
esophageal resection beyond the volume-outcome relationship.” That is to say, the mortality
rate may not in itself be a measure of quality care.

In criterion-related validity, we are applying a known criterion or gold standard to the
measurement instrument. It is assessed by correlating the measure of interest with an exter-
nal criterion that is known to measure the property of interest. Criterion-related validity can
be either concurrent or predictive. An example of criterion-related validity that is predictive
is the Scholastic Achievement Test. This test is used to predict the success of an individual
in the first year of college. Linear regression may be used to evaluate predictive validity.

SENSITIVITY, SPECIFICITY, AND PREDICTIVE VALUE OF A MEASURE

Sensitivity, specificity, and predictive value are aspects of data accuracy. They assist in
evaluating the validity of a measure, especially the indirect performance indicators that are
often used in health care. A measure is sensitive to the extent that it identifies every case in
which the property of interest is truly present (cell a, Table 3-1). If the measure is not sen-
sitive, it will not detect the property of interest when it is present (cell ¢). Specificity is the
aspect of measurement that results in exclusion of cases when the property of interest is
truly absent (cell d). If the measurement is not specific, it will falsely detect the property of
interest when it is not present (cell b). The accuracy of a test or measure is dependent upon
the number of false positives and false negatives that occur as a result of using the measure.
If the test is accurate, the number of false positives and false negatives will be low. The pre-
dictive value is the proportion of positive tests that are truly positive (a/a + b). The predic-
tive value of a positive test increases as sensitivity and specificity increase.

To determine the specificity and sensitivity of a proposed measure, a pilot test of the
measure may be conducted, with the results displayed in a table such as the one shown in
Table 3-1. In this table, the rows represent the true situation—the presence or absence of the
performance indicator. The columns represent the possible results of the measure for the
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Table 3-1 Assessing Sensitivity and Specificity of a Measure

True Situation/Event

Performance Performance
Test/Measure Indicator Present Indicator Absent Total
Positive a b a+b
Negative c d c+d
Total a+c b+d at+b+c+d
Sensitivity: al(a + c)
Specificity: d/(b + d)
Predictive Value: al(a + b): the predictive value of a positive

d/(c + d): The predictive value of a negative
There are four possible outcomes, represented by the four cells:
Cell a: true positives—the variable of interest is present and the measure reveals its presence
Cell b: false positives—the measure indicates the variable of interest to be present, but it is in-
correct
Cell c: false negatives—the variable of interest is present, but the measure does not reveal it
Cell d: true negatives—the variable of interest is absent, and the measure indicates that it is
absent

Source: Adapted from Introduction to Clinical Reasoning—Evidence Based Medicine. Medical University of South Carolina.
http://www.musc.edu/dc/icrebm/sensitivity.html

performance indicator of interest. The test is positive when it tells us that the performance
indicator is present and negative when it tells us that the performance indicator of interest
is not present.

A test is accurate to the extent that it does not result in false positives and false negatives.
A large number of false positives will lead to the unnecessary examination of cases where
no problem exists. In time, this will lead to the loss of the data’s credibility. A large number
of false negatives can result in overlooking cases that actually contain the performance in-
dicator of interest.

An example may help clarify assessment of sensitivity and specificity: A quality im-
provement team wants to evaluate the performance measure on diabetic long-term compli-
cations because it has not been tested for reliability and validity by the AHRQ (Exhibit 3-3).
The team knows in advance that diabetes with the specified complications, such as diabetic
peripheral vascular disease and diabetic ulcers, was the reason for admission in 20 cases.
How effective is our test in identifying these 20 cases? The results of the pilot test are dis-
played in Table 3-2.
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Table 3-2 Assessing Sensitivity and Specificity of
Admission for Diabetes with Specified Complication

Specified
Complication
Present
Admission for Diabetes
with Specified
Complication Yes No Total
Yes 15 10 25
No 5 70 75
Total 20 80 100

In this example, diabetes mellitus with the specified complications occurred in 20 cases
(a + ¢ = 15 + 5). The measure correctly identified 15 of the 20 cases; thus, the sensitivity
for the measure is 0.75 (a/a + c). The test incorrectly identified 10 patients as having the
problem. These are false positives. The test correctly identified 70 of the 80 cases that had
no problem; thus the specificity is 0.88 [d/b + d = 70/(10 + 70)]. The test also failed to
identify 5 cases where there were problems; these are false negatives.

Validity is the extent to which a measure actually measures a property or attribute one
wants to measure. In this example, the measure correctly identified 15 of the 25 cases in
which the diabetic complication was present; thus, the predictive value is 0.60 [a/a + b =
15/(15 + 10)]. The test correctly measures the property of interest 60% of the time.

Sensitivity, specificity, and predictive value quantify the accuracy of the quality measure.
With a sensitivity of 0.75, the measure misses 25% of the cases in which we are interested.
The predictive value is 0.60; thus, 40% of the time the measure tells us that there may be a
problem with performance when there is none. In this example, the measure is not highly
accurate.

RELIABILITY

Error is integral to the measurement process, whether it is the measurement of weight,
height, or blood pressure. Even when measurement is made as accurately as the instrument
allows and all procedures are followed, repeated measures do not always give exactly the
same results. This is because error is a component of all measurement. However, an instru-
ment that is reliable will tend to have results that are consistent with each other over repeated
trials. A measurement process is said to be reliable if repeated measurements over time on
the same property or attribute give the same or approximately the same results. A yardstick
is reliable because it will provide approximately the same result every time an object is mea-
sured, regardless of who is doing the measuring. An example of an unreliable measuring de-
vice is a scale that gives widely different weights each time the same object is measured.
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Measures should also be unbiased. A measurement process is unbiased if it does not sys-
tematically overstate or understate the true value of the attribute/property being measured.
An example of a biased but reliable measure is a scale that consistently measures weight 10
pounds less than the actual weight. An unbiased measure is correct on average.

There are three aspects of reliability: stability, internal consistency, and interrater agree-
ment. Stability, or test-retest reliability, is the extent to which the same results are obtained
on repeated applications. Stability is evaluated by administering the instrument to the same
group on two separate occasions—hence the name test-retest reliability. A reliability coef-
ficient is calculated from the two sets of scores. The reliability coefficient ranges from 0 (no
reliability) to 1.0 (perfect reliability).

Internal consistency measures the extent to which the items on the measurement instru-
ment are homogeneous, or consistent with one another. Internal consistency is measured by
Cronbach’s alpha, which is often referred to as coefficient alpha. Coefficient alpha also has
a range of 0.0 to 1.0; an instrument should have a minimum coefficient alpha of 0.70 for ac-
ceptability.

Interrater agreement is the extent to which results are in agreement when different indi-
viduals administer the same instrument to the same individuals or groups. This is an impor-
tant concept in coding. If we have four coders assigning codes to peripheral vascular disease
due to insulin-dependent diabetes mellitus, we want all four coders to come up with the same
codes. Interrater agreement should be 100%. The kappa statistic is used to assess interrater
agreement. This statistic is limited, however, because it requires that the responses be di-
chotomous. In the coding example, the codes would be evaluated as either right or wrong.

In using kappa, we are interested in determining the extent of agreement, not disagree-
ment, between raters. Kappa is obtained by the following formula:

K:AO_AE/N_AE

where Ag is the number of observations that are in agreement and Ag is the number of ob-
servations in agreement expected by chance alone.

Ao is obtained by summing the table diagonals (Ao = a + d), and the percentage of
agreement is obtained by Ao/N. Ag is obtained by multiplying the row total times the col-
umn total and dividing by the grand total, as follows:

AE:

(row marginal)(column marginal)/N
1

1=~

The range for the kappa coefficient is —1.0 to +1.0. A negative value indicates that the
proportion of agreement that resulted from chance is greater than the proportion of observed
agreement. High positive values of kappa indicate strong interrater agreement. Let us now
consider an example where two raters have been asked to evaluate the accuracy of a simple
random sample of 200 medical records that have been coded. The coded charts were evalu-
ated as right or wrong. The results appear in Table 3-3.
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Table 3-3 Results of Coding Assessments by

Two Raters

Rater 2
Rater 1 Right Wrong Total
Right 80 20 100
Wrong 25 75 100
Total 105 95 200

To obtain the number of observations that are in agreement between the two raters, Ao,
the diagonals are summed: 80 + 75 = 155. The percent agreement between the two raters
IS 77.5% (155/200). The number of observations in agreement that is expected by chance,
Ag, is obtained by

k
Ag = Z (row marginal)(column marginal)/N

i=1
— (100)(105)/200 + (100)(95)/200
=525+475
= 100
K = Ao — Ag)/(N — A)
— 155 — 100)/(200 — 100)
=055

The interpretation of kappa is that the obtained agreement of 77.5% is approximately
55% greater than what would be achieved by chance alone. Interpretation of the kappa sta-
tistic is as follows:

k < 0.20 negligible
0.20 = k < 0.40 minimal
0.40 = k < 0.60 fair
0.60 = k < 0.80 good
k = 0.80 excellent

In our example, the obtained kappa coefficient, 0.55, indicates that the raters obtained fair
agreement in their assessment of the sample of coded records.

In summary, a measure is reliable if (1) the same individual measures the same attribute
at another time and achieves the same result, (2) the individual applies the measure consis-
tently on all attributes, and (3) several individuals reach the same result when measuring the
same attribute.
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TIMELINESS

A critical aspect of data quality is timeliness. One must consider whether the data are col-
lected and available within a useful time frame. Does the collected information represent
the current condition of the patient or state of the organization? Data collected today are
more critical and useful to the decision maker than data collected yesterday or two weeks
ago. The value of collected data decreases with time.

For data to be accurate, the measure creating the data must be rigorously defined. A
common failure in the measurement process is to undertake the measurement process with-
out a clear definition of what is to be measured, who will use the resulting information, and
how the information will be used for making decisions. The measurement process must be-
gin with a strong commitment to identifying the information needs of those who will be us-
ing the information.

SCALES OF MEASUREMENT

As stated previously, all measurement results in a number. To properly assign numbers to
the measurement results, one must understand the scales of measurement. Understanding
the differences in the scales of measurement is also critical to make appropriate use of
graphic displays of data, to correctly select statistical techniques for data analysis, and to fa-
cilitate data entry.

Nominal Scale

The nominal scale is the lowest level of measurement. In the nominal scale, measures are
organized into categories; there is no recognition of order within these categories. Examples
of categories on the nominal scale of measurement are sex, religion, and third-party payer.
To facilitate computer analysis, numbers are assigned to nominal variable—for example,
male = 1, female = 2. The numbers assigned to the various categories carry no humerical
weight; the numbers merely serve as labels for the categories.

Statistical summaries of variables on the nominal scale may be prepared through the use
of a frequency distribution. On the nominal scale, a frequency distribution would indicate
the number of cases falling into each category. Using statistical notation, the frequency dis-
tribution would be represented as follows:

N:ka

where N is the total number of cases, f, is the frequency within category, and Z is a sum-
mation over all categories k.

As a hypothetical example, consider the nominal variable “method of payment.” For ini-
tial patient data collection, options may be commercial insurance (k = 1), managed care
(k = 2), Medicare (k = 3), Medicaid (k = 4), self-pay (k = 5), and other (k = 6). Thus, there
are six categories. A frequency distribution for patients admitted by method of payment is
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presented in Table 3—4. In our example, the total number of patients admitted during the
week of July 23 is 256 (N = 256), and the number of Medicare patients (frequency) who
were admitted is 62 (f; = 62).

Table 3-4 Number of Patients Admitted by Method of Payment, Week of July 23

Commercial Managed
Insurance Care Medicare Medicaid Self-Pay Other Total
75 43 62 55 6 15 256

Sometimes it is useful to show the proportion of cases falling into a category k. This pro-
portion is designated a p,. A proportion is the number of cases that fall within a particular
category divided by the total number of cases and is represented as

Pk = fk/N

The proportion of cases falling into each category will sum to 1. Using the same data from
Table 3-4, Table 3-5 represents the proportions and cumulative proportions for each cate-

gory.

Table 3-5 Proportion of Patients Admitted by Method of Payment, Week of July 23

Category Frequency (f) Proportion (p) Cum. Proportion
Commercial Insurance 75 0.293 0.293
Managed Care 43 0.168 0.461
Medicare 62 0.242 0.703
Medicaid 55 0.215 0.918
Self-pay 6 0.023 0.941
Other 15 0.059 1.000
Total (N) 256 1.000

The distribution of a variable into the various categories can also be represented by per-
centages, which are proportions multiplied by 100. For data that fall on the nominal scale of
measurement, frequencies may be represented in tables, charts, and graphs. The most ap-
propriate measure of central tendency for nominal-level data is the mode. For nominal data,
the mode tells us the category that has the most observations.

When designing a system of data collection for nominal variables, remember that the cat-
egories must be mutually exclusive and exhaustive. That is, each data element can fall into
only one category, and all possible categories must be accounted for. It may be appropriate
to assign an “other” category, as in the preceding example, when the number of data ele-
ments falling into some possible categories may be too small for data analysis or when the
category is not important to the purpose of the data collection.
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Ordinal Scale

Some nonnumeric scales have an order to their categories; these are called ordinal vari-
ables. On the ordinal scale, the order of the numbers is meaningful, not the number itself,
so the usual arithmetic operations are not meaningful. This is because the intervals or dis-
tance between categories are not necessarily equal. It is not appropriate to perform arith-
metic operations, such as calculating averages, on ordinal variables.

Examples of ordinal variables are the numbers assigned to indicate class rank, the order-
ing of adjectives that describe patient condition, and a Likert-type scale that can be used to
describe patient satisfaction. These examples are displayed in Table 3-6. A number may be
assigned to represent the ordering of the variables. In the case of class rank, we know that
an individual classified as a senior has completed more credit hours than a sophomore, but
we cannot say that a senior has completed twice as many credit hours as a sophomore. The
same is true regarding patient condition. A patient that is in critical condition is not neces-
sarily twice as sick as an individual who is in stable condition. Only the order of the value
is meaningful. On this scale, a patient in critical condition is sicker than a patient in guarded
condition. The frequency distributions of ordinal variables may be portrayed in the same
way as for nominal variables.

Table 3-6 Examples of Ordinal Variables

Class Rank Patient Condition Patient Satisfaction
1—Freshman 1—Resting and Comfortable 1—Strongly agree
2—Sophomore 2—Stable 2—Agree
3—Junior 3—Guarded 3—No opinion
4—Senior 4 —Critical 4—Disagree

5—Strongly disagree

Nominal and ordinal variables are considered discrete variables. Discrete variables have
gaps between successive values. Diagnosis-related groups (DRGs) are examples of discrete/
nominal variables.

Scales for Metric Variables

Metric variables are numeric variables that answer questions of how much or how many.
Metric variables fall on one of two scales of measurement: ratio or interval. Arithmetic op-
erations may be performed on ratio- and interval-scale measures.

* Ratio Scale. The ratio scale is the highest level of measurement. On the ratio scale there
is a defined unit of measure, a real zero point, and the intervals between successive val-
ues are equal. For example, consider the variable of length. Length has defined units of
measurement, such as inches, and a true zero point—0 inches. With a real zero point,
statements such as “Mary is twice as tall as Jill” can be made. Multiplication on the ra-
tio scale by a constant does not change its ratio character, but addition of a constant to
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a ratio measure does. For example, if an older sibling is twice as tall as a younger sib-
ling, and both grow 2 inches, the ratio of their heights is no longer 2:1. But if we mul-
tiply their respective heights by 2 (e.g., 60" X 2 and 30" X 2), the ratio between the two
heights remains 2:1.

« Interval Scale. Measures that fall on the interval scale have a defined unit of measure-
ment but do not have a true zero point. The most important characteristic of the inter-
val scale is that the intervals between successive values are equal. On the Fahrenheit
scale, the interval between 20°F and 21°F is the same as the interval between 21°F and
22°F. But since there is not a true zero on this scale, we cannot say the 40°F is twice as
warm as 20°F.

An advantage of metric data is that they can be grouped. Interval and ratio variables are
continuous. If a variable is continuous, it may take on fractional values, such as 85.3235°F.
With continuous variables, there are no gaps between values, since the values progress
fractionally. Graphic techniques that can be used to display interval and ratio data include
histograms, frequency polygons, and stem and leaf plots. Measures of central tendency that
may be reported for interval and ratio data are the mean, median, and mode.

The scale of measurement depends on the method of measurement, not on the attribute
being measured. For example, if we score a test by summing the total number of correct an-
swers, the resulting measures fall on the ratio scale. However, if each question is tallied ac-
cording to the total number who got the question right and the total number who got the
question wrong, the measures fall on the nominal scale because the measure falls into one
of two categories—*“right” or “wrong.” When developing measures for any purpose, one
must consider on what scale of measurement the collected data will fall so that the appro-
priate statistical procedures may be selected.

CONCLUSION

Measurement is a process that requires rigorous definition of what is being measured, the
data sources, and how the variable measured will be calculated. Several aspects of a mea-
sure should be evaluated: validity, reliability, sensitivity, specificity, and predictive value.

The validity of a measure is the extent to which an instrument measures what it is in-
tended to measure. Several aspects of validity were discussed: content validity, construct va-
lidity, and criterion-related validity. With content validity, we are interested in determining
whether the number of items on an instrument adequately measure the content of interest.
With construct validity, we are trying to determine if the items on an instrument actually as-
sess the attribute of interest, such as patient satisfaction. With criterion-related validity, we
are assessing whether the measure is correlated with an external criterion: for example,
whether a rise in serum glutamicoxaloacetic transaminase enzyme levels is correlated with
acute myocardial infarction.

Reliability is the extent to which an instrument gives the same results over time or over
repeated measures. Several aspects of reliability were discussed: test-retest reliability, inter-
nal consistency, and interrater agreement. Test-retest reliability is the extent to which re-
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peated administrations of an instrument provide the same results. Internal consistency is the
extent to which the items on an instrument are related to one another. Interrater agreement
is the extent to which different individuals who administer the same instrument achieve sim-
ilar results.

Other critical aspects of a measure are sensitivity, specificity, and predictive value. Sen-
sitivity is the ability of an instrument to detect the property of interest in every case where
it exists. Specificity is the ability of an instrument to exclude cases in which the property of
interest is truly absent. A test is accurate to the extent that it does not result in false posi-
tives and false negatives. Predictive value is the ability of an instrument or test to correctly
measure the proportion of positive tests that are truly positive or the proportion of negative
tests that are truly negative.

Finally, to understand the measurement process, we must understand the differences in
the scales of measurement: nominal, ordinal, interval, and ratio. In the nominal scale of
measurement, measures are organized into categories; the nominal scale is the lowest level
of measurement. In the ordinal scale of measurement, there is “order” to the categories; i.e.,
the numbers themselves are not meaningful, but the order is. On the interval and ratio scales
of measurement, the intervals between successive values are equal. Arithmetic calculations
may be performed on interval and ratio measures. The interval scale differs from the ratio
scale in that the interval scale does not have a true zero.
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Appendix 3-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
2. Describe the measurement process.

3.
4

. Compare and contrast the following aspects of validity: content validity, construct valid-

Why are validity and reliability requirements of accuracy in the measurement process?

ity, and criterion-related validity.

You weighed your dog this morning on your bathroom scale. His weight was 15 Ib. You
decided to weigh him again in the evening, and his weight had increased to 20 Ib. This is
most likely what type of measurement error? Explain your answer.

Compare and contrast the following measures of reliability: stability, internal consis-
tency, and interrater agreement.

Relate the importance of determining the sensitivity, specificity, and predictive value of
a screening measure.

Define nominal, ordinal, interval, and ratio scales of measurement.

What is the difference between a discrete variable and a continuous variable?

MULTIPLE CHOICE

1.

You are conducting a study in which “sex” is the property of interest. The variable “sex”
falls upon which of the following scales of measurement?

a. nominal

b. ordinal

c. ratio

d. interval

80
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2. You are interested in the lengths of stay for patients of Dr. Wells for a quality improvement
study. The variable “length of stay” falls upon which of the following scales of measurement?
a. nominal
b. ordinal
c. ratio
d. interval

3. You are assisting Dr. Scorch in his study of burn patients. He wants to classify the num-
ber of burn patients by severity of burn: first degree, second degree, or third degree. The
variable “severity of burn” falls upon which of the following scales of measurement?

a. nominal
b. ordinal

c. ratio

d. interval

4 “Severity of burn” is an example of which of the following types of variables?
a. continuous
b. discrete
c. interval
d. ratio

Questions 5 through 8 refer to the following case:

You have designed a survey instrument with a 5-point Likert-type scale consisting of
statements that measure physician satisfaction with health information management ser-
vices. On the scale, 1 = strongly agree (SA) and 5 = strongly disagree (SD).

5. You decide to take an average of the scores for each statement. In this case, you would
be treating the data as falling upon which of the following scales of measurement?
a. nominal
b. ordinal
c. ratio
d. interval

6. After reviewing the results, you decide that the mode might be the more appropriate mea-
sure of central tendency for these data. In reporting the mode, you are treating the data
as falling upon which of the following scales of measurement?

a. nominal
b. ordinal

c. ratio

d. interval

7. You have distributed this survey to the physicians five times. You are satisfied that the re-
sults are consistent. This aspect of reliability is:
a. internal consistency
b. test-retest reliability
c. interrater reliability
d. all of the above
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10.

11.
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However, upon careful review of the instrument, you decide that there are not enough
items to adequately cover services provided by your department. You are concerned
about which of the following types of validity?

a. content

b. construct

c. criterion-related

d. all of the above

Which of the following variables would be considered “continuous”?
a. age

b. sex

c. religion

d. principal diagnosis code

Which of the following variables would be considered “discrete”?
a. age upon admission

b. patient length of stay

c. DRG assignment upon discharge

d. time spent in operating room

Both the specificity and sensitivity of a recently developed clinical indicator are 0.99.
This means that:

a. if the indicator is present, it has a 99% chance of testing positive by the measure

if the indicator is absent, it has a 99% chance of testing negative by the measure
the case has a 99% chance of being correctly classified by the measure

(@) and (b)

all of the above

PoooC

PROBLEMS

1.

The hospital readmission rate is often considered an indicator of an undesirable patient
outcome. The quality improvement team is interested in reducing the number of read-
missions among patients discharged with a principal diagnosis of congestive heart fail-
ure (CHF). The team believes that the high readmission rate is due to the difficulty that
these patients have in controlling the number of drugs that they typically take. The team
believes that by improving patient/family education regarding drug administration, the
readmission rate could be reduced. Thus, they have developed the screen “CHF patients
taking three or more drugs” to identify these patients before discharge. To evaluate the
effectiveness of the measure, the team conducts a study on all CHF patients discharged
the previous year. The results appear in Table 3-A-1. Do the following:

a. Calculate the sensitivity, specificity, and predictive value for this measure.

b. On the basis of your results, is this an effective measure? Why or why not?

Exhibit 3-A-1 displays selected data elements from the proposed Case Mix Assessment
Tool for psychiatric inpatients. Identify the scale of measurement for each element, de-
termine if the measure is discrete or continuous, and determine what measure(s) of cen-
tral tendency may be used for each—mean, median, or mode.
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Table 3-A-1 Readmissions of CHF Patients

CHF Patients
No. of Drugs Not
Administered Readmitted Readmitted Total
= 3 drugs 200 40 240
< 3 drugs 100 900 1,000
Total 300 940 1,240

Exhibit 3-A-1 Selected Data Elements from Case Mix Assessment Tool for Behavioral Healthcare

Measurement Scale

Discrete/Continuous Measure of Central
Data Element Variable Tendency
Gender:
1—Male
2—Female

Number of Psychiatric Admissions
Number of Medications
Legal Status

1—\Voluntary

2—Involuntary

3—Criminal court hold
Unable to control substance abuse
within past 30 days

0—no

1—yes

Activities of daily living
0—Independent
1—Setup help only
2—Supervision
3—Limited assistance
4—EXxtensive assistance
5—Maximal assistance
6—Total dependence

White Blood Count: criteria—range 3.8—10.8

Number of falls in last 30 days
Source: Federal Register, Volume 69, No. 229, Friday, November 28, 2003, p. 66975.

3. At Werethebest Hospital, 34 Caesarean sections were performed during January; at rival
Weresosick Hospital, 54 Caesarean sections were performed during the month of Janu-
ary. During January, Werethebest Hospital had 200 deliveries; Weresosick Hospital had
1,100 deliveries. The national benchmark for the C-section rate is 15%.
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The head of obstetrics at Werethebest Hospital claims that their OB service provides bet-
ter care than that provided at the rival hospital. Do you agree with this assessment?

Develop measures for the following obstetric performance indicators proposed by the
Joint Commission. Your measure should include a definition, identification of data
sources, and procedures for calculation (formula).

a. Maternal readmissions within 14 days of delivery

b. Intrahospital maternal deaths occurring within 42 days postpartum

c. Patients with excessive maternal blood loss

. As part of the quality improvement team, you have prepared a report on acute myocar-

dial infarction (AMI) mortality, which is displayed in Table 3-A-2. You query DRG 121,

Circulatory Disorders with AMI and Cardiovascular (CV) complications, Discharged

Alive; DRG 122, Circulatory Disorders with AMI without CV Complications, Dis-

charged Alive; and DRG 123, Circulatory Disorders with AMI, Expired.

a. Assess Table 3—-A-2 for validity and reliability. What corrections should be made to
calculate the AMI mortality rate?

b. What is the AMI mortality rate?

c. Review Table 3-A-3, which displays the average length of stay for each DRG. What
factors should also be considered when presenting the AMI mortality rate? What is
the net AMI mortality rate?

Table 3-A-2 Acute Myocardial Infarctions, DRGs 121, 122, and 123

Principal Diagnosis DRG 121 DRG 122 DRG 123
410.01 3 1 1
410.11 9 3 4
410.31 2 1 0
410.41 11 1 1
410.61 1 0 0
410.71 66 31 9
410.91 25 11 5
421.0 1 0 0
428.0 31 0 0
Total 119 58 20

Table 3-A-3 Average Length of Stay (ALOS) and Numbers of Patients
with Length of Stay (LOS) Two Days or Less, DRGs 121, 122, and 123

DRG 121 DRG 122 DRG 123

ALOS 5.6 days 3.6 days 3.5 days
LOS = 2 days 26 18 10



CHAPTER 4

Measures of Central Tendency
and Variability

KEY TERMS  Population Class interval

Sample Apparent limits
Population parameter Real limits
Sample statistic Percentiles
Measures of central tendency  Percentile rank

Mode

Median

Mean

Weighted mean
Trimmed mean
Winsorized mean
Measures of variability
Polarization
Uniformity
Individuality
Range
Variance
Standard deviation

LEARNING At the conclusion of this chapter, you should be able to:

OBJECTIVES | Lefine key terms.

2. Calculate measures of central tendency—mean, median, and
mode—for grouped and ungrouped frequency distributions.

3. Calculate measures of variability—range, variance, and standard
deviation—for grouped and ungrouped frequency distributions.

4. Use statistical software to calculate measures of central tendency
and variation for grouped and ungrouped frequency distributions.

5. Explain why measures of central tendency and variability differ in
grouped and ungrouped frequency distributions.
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Two main types of measures are used to describe frequency distributions: measures of cen-
tral tendency and measures of variability. Measures of central tendency measure location;
measures of central tendency focus on the typical value of a data set. Variation emphasizes
differences. Measures of variability measure distance and/or dispersion around the typical
value of a data set. Generalizations about populations from samples are based on the varia-
tion of the variables in the data set.

Descriptive measures may be computed from both populations and samples. A popula-
tion is a group of persons or objects about which a researcher or investigator wishes to draw
conclusions. A sample is a subset of the population. Measures that result from the compi-
lation of data from populations are called parameters. Measures that result from analysis of
data from samples are called statistics. For example, if we were interested in determining
the average age of all members of the American Health Information Management Associa-
tion (AHIMA), all members of the association would make up the population; the average
age would be a population parameter. But, if we were to draw a sample from the mem-
bership list and then calculate the average age, the average would be a sample statistic.

MEASURES OF CENTRAL TENDENCY

As previously stated, measures of central tendency summarize the typical value of a vari-
able. When we think of measures of central tendency, we usually think of averages; however,
averages or the arithmetic mean may not always be the most appropriate way of summariz-
ing the most typical value of a data set. There are three major measures of central tendency;
the selection of the relevant measure of central tendency is related to the scale of measure-
ment used in data collection.

1. The mode, symbolized by Mg, is defined as the most frequently occurring observa-
tion in a frequency distribution; it is the only measure of central tendency that is ap-
propriate for nominal data.

2. The median, symbolized by Mp, is the midpoint of a frequency distribution; it is ap-
propriate for both ordinal and metric data.

3. The mean, symbolized by X (pronounced “x-bar”), is the arithmetic average; it is ap-
propriate for metric data.

Mode

The mode is the simplest measure of central tendency. With the mode, we are indicating the
most frequently occurring observation for metric data and/or the most frequently occurring
category for nominal data. The mode is an important measure of central tendency for
nominal-level data because an average cannot be taken from data that are placed in cate-
gories. Averages work only when a variable has a unit of measurement. The mode is an im-
portant measure of central tendency in the sense that it shows what the typical category on
a variable is. For example, if we group the membership of AHIMA by sex, on average, the
typical health information management (HIM) professional is female. We can say this be-
cause approximately 92% of the membership of AHIMA is female.
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Another interpretation of the mode is that if the goal is to be as accurate as possible, the
mode provides the best “guess” as to the category an observation may take on a variable.
That is, no other guess for a random case will be correct as often as the mode. Continuing
with our example, if one were to guess the sex of a typical HIM professional, the best
“guess” would be that the sex of the practitioner was female. In making this guess, one
would be correct approximately 92% of the time.

The mode offers several advantages: It is easy to obtain and to interpret, it is not sensi-
tive to extreme values, and it is easy to communicate and explain to others. However, there
are inherent disadvantages in using the mode. First, the mode may not be descriptive of the
data because the most common category may not occur very often, especially when there
are a large number of categories. Second, the mode may not be unique. That is, two cate-
gories or metric measures may be equally likely and more common than any other category
or metric measure; when this occurs, we have a bimodal or multimodal distribution. If each
category occurs with equal frequency, there is no mode. Third, the mode does not provide
information about the entire frequency distribution—it only tells us the most frequently oc-
curring value or category in the frequency distribution.

Also, the mode may be overly affected by sampling variation in cases where there is a bi-
modal distribution. If several samples are taken from the same population, the mode may
fluctuate widely from sample to sample. For nominal-level data, the mode is also sensitive
to how categories are combined. The classification scheme should be at the same level of
generality for all categories rather than having broad categories for some and more specific
categories for others. The mode can be manipulated by making the level of generality of dif-
ferent categories unequal. When reading a statistical analysis that reports the mode, we
should always examine the categories to make sure that the modal categories were not ma-
nipulated by use of categories at different levels of generality. For example, compare the fol-
lowing hypothetical data on hospital admissions:

Hospital Admissions Hospital Admissions
by Race—A by Race—B
White 60% White 60%
African American 15% African American 15%
Hispanic 12% Other 25%
Asian 8%
Other 5%

In example A, hospital admissions by race are distributed in a way that might be expected
in an urban population. However, in example B, a biased view of admissions is presented by
lumping two of the categories, Hispanic and Asian, into the “other” category. In this exam-
ple, the individual presenting the data may be interested in emphasizing the low percentage
in the African American category. Combining two racial categories into the other category
creates a biased view of the racial makeup of hospital admissions.
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For interval or ratio level data, the mode can be graphically represented in a frequency
polygon. Figure 4-1 displays the frequency of the ages of a group of 20 nursing home res-
idents, which are presented below:

76 76 78 78 78 78 78 80 80 80
82 82 82 84 84 86 88 88 90 90

The modal age is 78 (n = 5).

Figure 4-1 Frequency Polygon for Ages of 20 Nursing Home Residents
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For nominal data, the mode may be depicted in a bar chart (Figure 4-2).

Figure 4-2 Bar Graph of Hospital Admissions by Race
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Median

When categories of a variable are ordered, the measure of central tendency should take or-
der into account. The median does so by finding the value of the variable that corresponds
to the middle case. It is a positional measure that indicates the point at which 50% of the
cases fall above and 50% of the cases fall below.

If there is an odd number of observations in the frequency distribution, the median is the
middle number. In the following frequency distribution, the median is 5—there are four
cases above and four cases below the value 5.

1234567289

If there is an even number of observations, the median is the midpoint between the two
middle observations. It is found by averaging the two middle scores [(x + y)/2]. In the fol-
lowing frequency distribution, the median is 5.5 [(5 + 6)/2].

12345678910

If the two middle observations take on the same value, the mode is that value. When de-
termining the mode, it does not matter if there are duplicate observations in the frequency
distribution. Consider the following frequency distribution:

1223444567

In this distribution there are 10 observations, so the median falls between cases between
the fifth and sixth observation. Therefore, the median is 4 [(4 + 4)/2 = 4].

The median is an important measure for data that fall on the ordinal scale of measure-
ment. This is due to the limitations of other measures for ordered data. The mode can be
used for ordinal data, but it does not take “order” into account, which is the characteristic
that makes the measure more than just a nominal classification. The mode can also be un-
representative for an ordinal measure. It is also not meaningful to take an average of ordered
variables because the distance between the intervals is not necessarily equal. This concept
is illustrated in Table 4-1, hospital ranking by severity of illness. Hospitals with adjacent
ranks differ by as little as 0.001 (1.826 — 1.825) on their severity of illness scores, or by as
much as 0.127 (1.753 — 1.626).

Averages are often calculated on ordered variables, but the results can be misleading.
Therefore, when choosing a measure of central tendency, you should consider not only the
scale of measurement upon which the variable falls but also the purpose of the measure.
There are several advantages of using the median. First, it is relatively easy to obtain; sec-
ond, it is based on the whole distribution rather than just a small portion of the distribution,
as is the case with the mode. Third, the median is not influenced by extreme values or un-
usual outliers, so it is considered a resistant statistic. The median has another advantage in
that it can be computed when a distribution is open-ended at the extremes. For example,



90 CHAPTER 4 MEASURES OF CENTRAL TENDENCY AND VARIABILITY

Table 4-1 Hospital Ranking by Severity of
lliness

Hospital Severity Distance Between
Ranking of lliness Severity of lliness Scores

1 2.152 -

2 2.027 0.125 (2.152 — 2.027)
3 1.965 0.062

4 1.876 0.089

5 1.826 0.050

6 1.825 0.001

7 1.753 0.072

8 1.626 0.127

9 1.594 0.032

consider the median length of stay for a group of five patients who were admitted to the hos-
pital on the same day. If two patients are discharged on day 2 and one patient is discharged
on day 4, the median length of stay is four days. The median can be determined without
waiting to see how long the remaining two patients stay in the hospital. While we can de-
termine the median in this example, we cannot determine either the mode or the mean until
the two remaining patients are discharged.

Mean

The most effective way of summarizing the center of metric data is to average the values on
the variable. The mode and median can be computed on metric data but they do not take full
advantage of the numeric data inherent in the data in the frequency distribution. The formula
for calculating the mean is

X => XIN
i=1

where 2, is summation, X; is each successive observation in the frequency distribution (from
the first observation, i = 1, to the last observation, n), and N is the total number of obser-
vations in the distribution.

To calculate the average daily census for the data in Table 4-2, we substitute into the pre-
ceding formula as follows:

_ n
X = > XIN
i=1
= (167 + 185 + 173 + 182 + 179 + 173 + 170)/7

= 1,229/7
= 175.6
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Table 4-2 Daily Census, Critical Care
Hospital, Week of July 2, 20xx

Day of Week Daily Census
Sunday 167
Monday 185
Tuesday 173
Wednesday 182
Thursday 179
Friday 173
Saturday 170
Average Daily Census 175.6

The properties of the mean are presented in Exhibit 4-1.

Exhibit 4-1 Properties of Arithmetic Mean

1. The total sum of the deviations around the mean is zero.

2. The total sum of the negative deviations from the mean is always
equal to the sum of the positive deviations from the mean. There-
fore, the mean is the balance point for the distribution.

3. The sum of the squared deviations around the mean is smaller than
the sum of the squared deviations around any other value.

4. The mean is more stable over repeated measures than any other
measure of center.

5. Other important statistics, namely, standard deviation and standard
error of the mean, are based on deviations from the mean.

There are two disadvantages associated with the mean. First, the mean can take on a frac-
tional value even when the variable itself can take on only integer values. Consider the ex-
ample in Table 4-2, which gives the daily inpatient census for one week. The average daily
census results in a fractional number even though we do not have fractional patients. How-
ever, fractional values are considered more as a problem of interpretation than as a non-
meaningful result. For the data in Table 4-2, we could interpret the average daily census as,
“On average, the number of inpatients per day was between 175 and 176.”

A second disadvantage is that the mean is sensitive to extreme measures. That is, the
mean is strongly influenced by outliers; therefore, it is considered a nonresistant measure.
For example, if in Table 4-2, the daily census for Sunday was 225 instead of 167, the aver-
age daily census would increase to 183.9.
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Weighted Mean

Often in the health care setting, we are involved in analyzing several data sets that contain
the same information but for different time intervals. That is, we have several samples with
separate means for each, and each sample may be of a different size. Review the data pre-
sented in Table 4-3.

Table 4-3 Calculation of Arithmetic and Weighted
Means for Average Length of Stay (ALOS)

Discharges Discharge
Month (n) Days ALOS
Jan 947 4,228 4.46
Feb 763 3,965 5.20
Mar 574 1,842 3.21

Average of Means: (4.46 + 5.20 + 3.21)/3 = 4.29
Weighted Mean: [4.46(947)] + [5.20(763)] + [3.21
(574)1/2,284 = 4.39

What is the overall mean for the three months? One might be tempted to sum the means
and divide by 3, which would result in an “average of the means.” This would be inappro-
priate, because it would not take into account the difference in the sample sizes for each
month. We need to calculate the weighted mean, which takes into account the difference in
the size of each sample. We calculate the weighted mean by

Weighted X = > N; X;/N

where 2, is summation, N; is the number of observations in each frequency distribution, N
is the total number of observations in combined frequency distributions, and X ; is the mean
of each distribution.

To calculate the weighted mean for the data in Table 4-3, we have

Weighted X = ENi)?i/N
— [4.46(947)] + [5.20(763)] + [3.21(574)]
= 4.39

Compare the calculations in Table 4-3. The weighted mean takes into account the differ-
ence in the number of discharges for each month and is therefore more precise.
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The mean can also be calculated for dichotomous data. We have already discussed the
mode as the appropriate measure of central tendency for categorical data. Sometimes, how-
ever, when we have only two categories, it is more relevant to express the mean as the pro-
portion of cases that fall into a certain category. When we are dealing with dichotomous
data, we must first code the data; by convention, the variable of interest is coded as “1.” For
example, if the number of females in a class in mathematics is the variable of interest, “sex”
is coded as follows: 1 = female; 0 = male. The proportion of cases with a score of 1 is de-
noted as p. p is a mean with an intuitive interpretation—the proportion of cases that fall in
the category scored “1.” Review the data presented in Table 4-4. In this context, the mean
is related to the category of interest, not necessarily the most typical category. The inter-
pretation is that the proportion of women in the math class is 0.15.

Table 4-4 Proportion of Females in Math

Class

Sex Code f p
Female 1 30 0.15(p)
Male 0 170 0.85(1 — p)
Total 200 1.00

Mean = p = f;/n = 30/200 = 0.15

As we have already discussed, one of the disadvantages of using the mean is that it is sen-
sitive to extreme measures. To eliminate the effects of extreme measures, the outliers may
be “trimmed” from the frequency distribution before the mean is calculated. An example of
trimmed mean occurs in some competitive sports, where the top and bottom scores are dis-
carded before the mean score is computed.

Another method for improving the calculated mean's resistance to extreme measures is
to “winsorize” the mean. In winsorizing, the most extreme values are changed to equal the
next less extreme values rather than being dropped totally from the data set, as in trimming.
For example, the 5% trimmed mean drops the highest 5% of the observations and lowest
5% of the observations before the mean is computed. The 5% winsorized mean with 20
observations changes the highest value (highest 5%) to the second highest value, and
changes the lowest value (lowest 5%) to the second lowest value. Exhibit 4-2 compares
these methods.

In Exhibit 4-2, we can see that the arithmetic mean is 1,257.7, which is vastly different
from the trimmed mean, 1,217.5, and the winsorized mean, 1,216.6. The latter two adjusted
means are actually similar to the median, 1,220. Which measure of central tendency best
represents the distribution? This is where judgment is important. The statistical analyst
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Exhibit 4-2 Calculation for Arithmetic Mean, Trimmed Mean, and Winsorized Mean

Data Set:
660 1,070 1,220 1,430
740 1,100 1,250 1,475
800 1,100 1,250 1,550
820 1,140 1,250 1,600
880 1,150 1,300 1,700
930 1,150 1,300 1,850
1,000 1,200 1,400 2,900

Before calculations are made, arrange the data in order from lowest to highest.

Arithmetic Mean: Sum the observations and divide by the total number of observations:
660 + 740 + ... + 2,900 = 35,215/28 = 1,257.7

Trimmed Mean:  Eliminate the lowest number, which is 660.
Eliminate the highest number, which is 2,900.

Subtract these values from the previous sum: 35,215 — (660 + 2,900) = 31,655
Divide by the remaining number of observations: 31,655/26 = 1,217.5

Winsorized Mean: Identify the lowest 5%, 660 and 740, which are each replaced by 800.
Identify the highest 5%, 1,850 and 2,900, which are replaced by 1,700.
32,215 — 600 — 740 — 1,850 + 2,900 = 29,065
29,065 + 800 + 800 + 1,700 + 1,700 = 34,065

Divide by the total number of observations:
34,065/28 = 1,216.6

Median: 1,220

Summary: Arithmetic Mean: 1,257.7
Trimmed Mean: 1,217.5
Winsorized Mean: 1,216.6

must “eyeball” the raw data to make this decision. It appears that the highest score, 2,900,
is strongly influencing the arithmetic mean. Therefore, the trimmed mean, the winsorized
mean, and/or the median better represent this data set. The data analyst should select the
measure of central tendency that best describes the typical value in the frequency distribu-
tion. The analyst should include an explanation of why an alternative to the more tradi-
tional measure of central tendency, the mean, was used to describe the frequency
distribution.

We can use SPSS or other statistical software to calculate the mean, median, and
mode. The SPSS output is displayed in Exhibit 4-3. From the “Analyze” menu, choose
“Descriptive statistics,” then “Frequencies.” In the Frequencies dialog box, select “Sta-
tistics,” and click “Mean, Median, and Mode.” SPSS summarizes our data set in a fre-
quency table.
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Exhibit 4-3 SPSS Output for Measures of Central

Tendency
Statistics
Data Set
N
Valid 28
Missing 0

Mean 1257.6786
Median 1210.0000
Mode 1250.00

To obtain the mean, median, and mode using
SPSS:
¢ From the menus, choose:
Analyze
—Descriptive statistics
—Frequencies
« In the Frequencies dialog box, click
Statistics
—Select Mean, Median, Mode

MEASURES OF VARIABILITY

Measures of central tendency are not the only statistics used to summarize a frequency dis-
tribution. We also want to consider the spread of the distribution, which tells us how widely
the observations are spread out around the measure of central tendency. The most commonly
used measures of spread are the variance and the standard deviation. The scales of mea-
surement appropriate for the use of the variance and standard deviation are the interval and
ratio scales.

Measures of spread increase in value with greater variation on the variable. Measures of
spread equal zero when there is no variation. Maximum spread for metric and ordinal variables
occurs when cases are evenly split between two extreme groups. This is called polarization.
Maximum dispersion for nominal variables is defined as when there is an even distribution of
cases across the categories regardless of the number of categories; this is called uniformity.
When each category of a nominal variable occurs just once, it is called individuality.

Range

The simplest measure of spread is the range. It is simply the difference between the small-
est and largest values in a frequency distribution:

Range = X ax — Xmin
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The range is easy to calculate but is affected by extreme measures. Therefore, it is a non-
resistant measure of spread. The range varies widely from sample to sample. Only the two
most extreme scores affect its value, so it is not sensitive to other values in the distribution.
Also, the range is dependent upon sample size: in general, the larger the sample size, the
greater the range.

Two frequency distributions may have the same range, but the observations may differ
greatly in variability. For example, consider the following two frequency distributions:

Distribution 1
1 2 3 4 5 6 7 8 9 10

Distribution 2
1 15 3 35 37 7 8 826 10 10

The range for both distributions is 9 (10 — 1 = 9). But if we compare the two distribu-
tions, we see that there is more variation in distribution 2 than in distribution 1. This is con-
firmed when the variance for each distribution is calculated—the variances for distributions
1 and 2 are 3.03 and 3.44, respectively.

Variance and Standard Deviation

The variance (s%) is the average of the squared deviations from the mean. The variance of
a frequency distribution will be larger when the observations within the distribution are
widely spread. The variance (and, as we shall see, the standard deviation) is maximized
when the data are polarized. The formula for calculating the variance is:

2= > (Xi— X)?IN -1
i=1

The squared deviations of the mean are calculated by subtracting the mean of a fre-
quency distribution from each value in the distribution, X — X. The difference between
the two values is then squared, (X — X)?. The squared differences are summed and di-
vided by N — 1.

The term N — 1 is a concept referred to as the number of degrees of freedom. If the
mean of a frequency distribution is known, then only N — 1 observations are free to vary.
Stated another way, if we know the mean, and the N — 1 scores, we can determine the nth
score. The effect of dividing by N — 1 increases the value of s? slightly, and is considered
to be a less biased estimate of the population variance. However, when N is large, the ef-
fect of using N — 1 instead of N is negligible. We will encounter this concept again in
later chapters.

As an example, we will calculate the variance for the census data that appear in Table
4-2.The average daily census is 175.6. To calculate the variance, we set up the problem
as follows:
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Census — (Census —

Mean Mean)

Day Census (X —X) (X—X)
Sunday 167 —8.6 73.96
Monday 185 9.4 88.36
Tuesday 173 —2.6 6.76
Wednesday 182 6.4 40.96
Thursday 179 3.4 11.56
Friday 173 —2.6 6.76
Saturday 170 —5.6 31.36
Total 1,229 ~0* 259.72

*Approximate due to rounding.

Note that in the property of the mean that is described in Exhibit 4-1, the sum of the de-
viations from the mean is equal to 0 and is displayed in the preceding calculations. (In this
example, the sum is approximately equal to 0.0 because the mean is rounded.) Substituting
into the formula, we calculate the variance as:

2= > (Xi— X)?N-1
i=1

= 259.72/6
= 43.28

The variance is equal to 43.28, but what does this mean? The interpretation of the vari-
ance is not easy at the descriptive level because the original units of measure are squared to
arrive at the variance. However, if we take the square root of the variance, we return to the
original units of measurement. The square root of variance is the standard deviation (s):

n —
s = \/Z(xi — X)’IN -1
i=1
Continuing with the census example, the standard deviation is calculated as

s = \/i(xi — X)’N — 1
i=1

= V43.28
= 6.58

The standard deviation is the most widely used measure of variation that is used in descrip-
tive statistics. The standard deviation measures variability in the same units of measurement as
the sample (i.e., height, age, length of stay, and so on). Since the standard deviation is easier to
interpret, it is the preferred measure of dispersion for a frequency distribution. The standard de-
viation is interpreted in relation to the normal distribution, which we will discuss in Chapter 5.
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As we already noted, the variance is of little use in descriptive statistics, but it is impor-
tant in procedures related to statistical inference. The standard deviation, which is the square
root of the variance, is defined in terms of deviations from the mean. It is an important mea-
sure at the descriptive level. Procedures for calculating the mean, variance, and standard de-
viation of a frequency distribution are outlined in Exhibit 4-4.

Exhibit 4-4 Calculation of Mean, Variance, and Standard Deviation for Ages of Nursing Home Residents

Patient No. Age (X —X) (X —X)®>  Patient No. Age X =X) (X —X)?

1 76 —6 36 11 82 0 0
2 76 —6 36 12 82 0 0
3 78 —4 16 13 82 0 0
4 78 —4 16 14 84 +2 4
5 78 —4 16 15 84 +2 4
6 78 —4 16 16 86 +4 16
7 80 -2 4 17 88 +6 36
8 80 -2 4 18 88 +6 36
9 80 -2 4 19 90 +8 64
10 80 -2 4 20 90 +8 64
hy 1,640 0 376

Using a random sample of 20 nursing home residents, calculate the average age of nursing home residents.
Mean:
1. Sum the observations (X): 1,640
2. Divide by the number of observations (N): 20
1,640/20 = 82

Interpretation: The average age or typical age of any nursing home resident is 82.

Variance: _
1. Subtract the mean from each observation: (X — X)
2. Square each deviation from the mean: (X — X)?

3. Sum the squared deviations from the mean:E (X — X)?
4. Divide the sum of the squared deviations from the mean by N — 1 (19).

52=2 (X —X)?N -1
= 376/19
=19.8

The standard deviation is the square root of the variance:

s= \/E(X—Y)Z/N -1

= 4.45

Interpretation: Approximately 68% of the nursing home residents are between the ages of 77.55 (X + 1s).
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CALCULATING MEASURES OF CENTRAL TENDENCY AND VARIABILITY
USING SPSS

Thus far, we have reviewed the formulas for calculating the mean, range, variance, and stan-
dard deviation. Exhibit 4-5 displays the SPSS output for the measures of central tendency
and variation for the nursing home data presented in Exhibit 4-4. To calculate these mea-
sures using SPSS, select “Descriptive Statistics” from the Analyze menu, then select “Fre-
guencies.” In the Frequencies dialog box, select “Options.” You can now “click” the
measures of central tendency and variation that you are interested in. A frequency table is
prepared as part of the output. This allows you to verify the actual observations that were
entered on the data sheet. Each age, as well as the number of times it was entered on the data
sheet, appears in columns 2 and 3, respectively.

Exhibit 4-5 SPSS Output for Nursing Home Data

Statistics

Age
N

Valid 20

Missing 0
Mean 82.0000
Median 81.0000
Mode 78.00*
Std. Deviation 4.44854
Variance 19.7895
Range 14.00

*Mulitple modes exist. The smallest value is shown.

Age
Valid Cumulative
Frequency Percent Percent Percent
Valid 76.00 2 10.0 10.0 10.0
78.00 4 20.0 20.0 30.0
80.00 4 20.0 20.0 50.0
82.00 3 15.0 15.0 65.0
84.00 2 10.0 10.0 75.0
86.00 1 5.0 5.0 80.0
88.00 2 10.0 10.0 90.0
90.00 2 10.0 10.0 100.0
Total 20 100.0 100.0
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Note that for the statistics table, there is a note indicating that the distribution contains
multiple modes with the smallest value displayed in the report. Thus, the mode may not be
a fair representation of the distribution. The frequency table tells us that there are two
modes, 78 and 80.

In reviewing the data, you can see that the results are similar to the results that were cal-
culated with the assistance of a hand-held calculator. Note that the results indicate the num-
ber of observations that were included in the calculation. This should always be reviewed to
verify that the correct number of observations was entered on the SPSS data sheet. Com-
puter packages also provide more precision in our results. SPSS carried out the calculations
to more than four decimal places.

DICHOTOMOUS DATA

Just as we could compute the mean for dichotomous data, we can also determine the vari-
ance and standard deviation for dichotomous data:

Variance: s> = p(1 — p)
Standard deviation: s = Vp(1 — p)

where p is equal to the variable of interest. In our coding scheme, for the variable “sex,” the
category of interest, “female,” is coded 1, and the “male” category is coded 0. Calculations
of the variance and standard deviation for the variable “sex” are presented in Exhibit 4-6.

Exhibit 4-6 Calculation of Variance and Standard
Deviation for Dichotomous Data

Sex Code f p
Female 1 30 0.15 (p)
Male 0 170 0.85(1 — p)
Total 200 1.00

Mean: p = f;/n = 30/200 = 0.15
Variance: s?=p(1 — p) = 0.15(1 — 0.15) = 0.1275

Standard deviation: s=V p(1 — p) = 0.357

GROUPED FREQUENCY DISTRIBUTIONS

Since it is inconvenient to work with large data sets, sometimes data are grouped into class
intervals for analysis. Table 4-5 presents an example of an ungrouped frequency distribu-
tion. There are 58 patients with varying lengths of stay (LOSSs). In this format, the data are
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difficult to interpret, so we will group the LOSs into class intervals. Intervals are ways of
classifying and/or summarizing raw data into categories.

Table 4-5 Patient Length of Stay (LOS)

Frequency
LOS (X) f X
1 0 0
2 2 4
3 6 18
4 6 24
5 6 30
6 11 66
7 6 42
8 8 64
9 5 45
10 3 30
11 1 11
12 2 24
13 1 13
14 1 14
Total 58 385

Grouping Data

The first step in grouping data is to determine the number of class intervals (categories) to
use. There is no fixed rule as to how many intervals are appropriate; some recommend 5 to
15 class intervals, while others recommend 10 to 20. All agree, however, that there should
not be more than 20. As an example, we will group the LOS frequency distribution that ap-
pears in Table 4-5. To construct the grouped frequency distribution, we will arbitrarily se-
lect five as the number of class intervals for grouping the LOS data. Next, we need to
determine the width of each of these intervals. This is accomplished by dividing the range
of the distribution by the number of class intervals: (14 — 2)/5 = 2.4. The nearest odd inte-
ger value is used to select the width of the class interval; thus, the width will be 3. To con-
struct the class interval, we need to determine what the highest and lowest class intervals
should be. These class intervals will contain the highest and lowest values in the frequency
distribution. In the LOS data in Table 4-5, the number 14 is the highest observation and the
number 2 is the lowest observation; thus, the highest and lowest class intervals must contain
these values. The class interval containing the highest value should be placed at the top of
the grouped frequency distribution, and the lowest class interval should be placed at the bot-
tom of the grouped frequency distribution. Intervals should be continuous throughout dis-
tribution: that is, there should not be any gaps in values in the distribution. Using the
ungrouped data, tally the frequencies that occur in each interval. The LOS data in Table 4-5
are presented as a grouped frequency distribution in Table 4-6.
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Table 4-6 Grouped Frequency Distribution, LOS Data

Class Interval Class Interval
Apparent Limits Real Limits Tally f M
13-15 12.5-15.5 /! 2 14
10-12 9.5-12.5 HH/ 6 11
7-9 6.5-9.5 HH HH HH 1111 19 8
4-6 3.5-6.5 HH HH HH HH 11/ 23 5
1-3 0.5-3.5 11/ 8 2

58

Table 4-6 groups the LOS data into five class intervals, each having a width of 3. Also,
note that there are two columns—one indicating the apparent limits of the class interval
and the other indicating the real limits of the class interval. The real limits depict the con-
tinuous nature of the distribution. The interval width is the difference between the upper and
lower real limits of the class interval—for example, 3.5 — 0.5 = 3. The highest value, 14,
is contained in the class interval “13-15,” and the lowest value, 2, is contained in the class
interval “1-3.” Keep in mind that the distribution should not contain any gaps; even if there
are no values that fall within a given interval, it should be included in the distribution. The
midpoint (M) of the intervals is obtained by adding the apparent limits of the class intervals
and dividing by 2—for example, (1 + 3)/2 = 2; (4 + 6)/2 = 5. The midpoint will be used
in calculating the mean, median, and mode of the grouped distribution. As an alternative to
the preceeding procedure for constructing class intervals, we can use the “Sturges” rule as
a guide:

k =1 + 3.3log,(n)

where log,, is the usual base 10 logarithm, k is the number of class intervals, and n is the
number of data items to be grouped into class intervals.

Using the LOS data from Table 4-5, the number of class intervals (k) required for the
grouped frequency distribution would be calculated as follows:

k=1 + 3.3log,(n)
log;0(58) = 1.7653
k=1+ 3.3(1.7653)
=6.82

Since our result is a fraction, we will round to the nearest whole number. Thus, seven
class intervals are needed for grouping the frequency distribution in Table 4-5.

After the number of class intervals has been determined, the next step is to determine the
width of the intervals:
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width = max — min (range)/k

where max is the largest value in the data set, min is the smallest value in the data set, and
k is the number of class intervals.

width = (14 — 2)/7 = 12/7 = 1.7 = 2

The results appear in Table 4-7. The data in Table 4—7 are usually summarized as pre-
sented in Table 4-8. The proportion of the total in each class interval is called the relative
frequency (rel f) and is obtained by dividing the frequency (f) or number of observations
in a given interval by the total number of observations (N). The cumulative frequency (cum
f) is obtained by summing the observations in each interval with the number of observations
(frequencies) in the next interval, beginning with the lowest class interval and proceeding
upward. The first class interval (1-2) contains two observations; thus, the cumulative fre-
quency is 2. The next class interval contains 12 observations; thus, the cumulative frequency
is 14 (2 + 12). Proceed in this manner until the last class interval is reached. Exhibit 4-7
outlines the steps for constructing a grouped frequency distribution.

Table 4-7 Class Intervals for LOS Data

Apparent Limits Real Limits Tally f M
13-14 12.5-145 // 2 13.5
11-12 10.5-12.5 /A 3 11.5

9-10 8.5-10.5 HH 11/ 8 9.5

7-8 6.5-8.5 H HH HH 14 7.5

5-6 4.5-6.5 Hi HH HH 1] 17 5.5

34 2.5-45 HH H 1/ 12 3.5

1-2 0.5-2.5 1/ 2 1.5
Total 58

Table 4-8 Grouped Frequency Distribution of LOS Data

Class Interval f Cum f Rel f

13-14 2 58 (56 + 2) 0.034 (2/58) 100.0 (96.5 + 3.4)

11-12 3 56 (53 + 3) 0.052 96.5 (91.3 + 5.2)
9-10 8 53 (45 + 8) 0.138 91.3 (77.5 + 13.8)
7-8 14 45 (31 + 14) 0.241 77.5 (563.4 + 24.1)
5-6 17 31 (14 + 17) 0.293 53.4 (24.1 + 29.3)
3-4 12 14 (2 +12) 0.207 24.1 (3.4 + 20.7)
1-2 2 2 0.034 3.4

Total 58
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Exhibit 4-7 Steps in Constructing a Grouped
Frequency Distribution

1. Determine the number of class intervals
needed by the Sturges rule. It is suggested
that the number of intervals be limited to
20.

2. Determine the width of the class intervals
by dividing the range of the frequency dis-
tribution by the number of class intervals
obtained in step 1. Intervals should be set
up so that one score cannot belong to more
than one class interval.

3. Determine the point at which the lowest
class interval should begin.

4. Record the limits of all class intervals, plac-
ing the interval containing the highest score
value at the top. Intervals should be contin-
uous and of the same width. Do not leave
out class intervals in which no observations
occur; to do so would create a misleading
impression.

5. Using the tally system, place a tally for
each observation in the corresponding class
intervals.

6. Summarize the tallies for each class inter-
val in a frequency (f) column.

7. Record the total (f) at the bottom of the
frequency column.

There are several disadvantages associated with grouped frequency distributions. First,
precision in the resulting statistical calculations is lost. When values are grouped into an in-
terval, the values may be spread evenly throughout the interval, or the values may be con-
centrated at either end of the interval. When data are grouped, the assumption is that the
observations are spread evenly across the class intervals. Second, as we have seen, different
groupings can result from the same frequency distribution. Grouping a set of values does
not result in a unique set of grouped scores. That is, if the same frequency distribution were
grouped into slightly different class intervals, the sample statistics would not be exactly the
same.

Calculating the Mean from a Grouped Frequency Distribution

The first step in calculating the mean from a grouped frequency distribution is to deter-
mine the midpoint of each interval. Table 4-9 presents the grouped LOS with the corre-
sponding midpoint (X) for each interval. The midpoint represents all observations that fall
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Table 4-9 Grouped LOS Data for Calculating

the Mean
Class Interval Midpoint (X) f f(X)
13-14 13.5 2 27
1112 11.5 3 34.5
9-10 9.5 8 76
7-8 7.5 14 105
5-6 5.5 17 93.5
3-4 3.5 12 42
1-2 41.5 2 3
> =58 3 =381
X=3fXIN
= 381/58
= 6.57

into that interval. For example, the observations 13 and 14 (from Table 4-5) fall into the
class interval “13-14"; the midpoint, 13.5, represents both of these observations. The mean
is obtained by multiplying the midpoint (X ) of each class interval by its corresponding fre-
quency (f); these observations are summed and then divided by the total number of obser-
vations (N):

X =D /N

where X is the midpoint of each interval.
Therefore, for the grouped LOS data, the mean is

X = 381/58

= 6.57

The mean for the grouped data, 6.57 (Table 4-9), does not equal the mean for the ungrouped
data, 6.64 (385/58). This discrepancy illustrates the loss of precision that occurs when
grouping frequency distributions.

Calculating the Median from Grouped Data

Recall that the median is the point in a distribution that 50% of the observations fall above
and 50% of the observations fall below. To determine the median in a grouped distribution,
we first need to determine which observation meets this definition. For the LOS data in
Table 4-9, the median would be the 29th value, as calculated below:

50% of N = 0.5 X 58 = 29
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Thus, the 29th value will be the median for the grouped distribution. Inspection of the data
in Table 4-8 shows that the 29th observation falls in the interval “5-6.” How is this deter-
mined? Begin counting the frequencies (f) in the lowest class interval, 1 to 2, until the in-
terval containing the 29th observation is located (2 + 12 + 17 = 31). The interval 5 to 6
contains the 15th, 16th, 17th, 18th, 19th, and so on, up to the 31st observation. Thus the 29th
observation occurs in this interval. The cumulative frequency column provides this infor-
mation for us. The median is obtained by

Mdn = L[w(1/2n — ¢)]fman

where L is the real lower limit of the class interval containing the median, W is the width of
the interval, c is the total number of values falling below the interval containing the median
(cumulative frequency), and f.q, is the frequency of the values in the interval containing the
median value.

Substituting into our formula, since L= 4.5, w = 2, ¢ = 14, and f.,q, = 17, we have

4.5 + {2[1/2(58) — 14]}/17
= 45 + [2(15)]1/17
= 4.5 + (30/17)
— 45+ 176
= 6.26

The median for the grouped frequency distribution is 6.26 days; the median for the un-
grouped distribution is 6 days.

Calculating the Mode from Grouped Data

There are several ways to determine the mode from grouped data. The simplest is to take the
midpoint of the most frequently occurring class interval. For the LOS data in Table 4-9, the
mode is 5.5 because 17 observations fall in this interval. This is referred to as the crude
mode.

The second way to determine the mode from a grouped distribution adjusts the modal
value in relation to the relative frequencies in the class intervals adjacent to the class inter-
val containing the modal value. It pulls the modal value toward the adjacent class interval
that has greater frequency. This mode is referred to as the refined mode, and is calculated
as follows:

Refined mode = W(fno — fu)/(fno — fo) + (fmo — Ta)
where L is the real lower limit of the class interval containing the modal value, w is the

width of the class interval, f,,, is the number of values (f) in the class interval containing
the mode, f}, is the number of values (f) in the adjacent class interval below the class in-
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terval containing the mode, and f, is the number of values (f) in the adjacent class interval
above the class interval containing the mode.

For the grouped LOS data in Table 4-10, L = 4.5, w = 2, f,, = 17, f, = 12, and f, = 14,
so the refined mode is calculated as follows:

Refined mode = W(fno — fo/(fno — fo) + (fmo — o)
=45+ [2(17 — 12))/(17 — 12) + (17 — 14)
= 4.5+ 2[5/(5 + 3)]

= 4.5 + (10/8)
=45+ 125
=575

Table 4-10 Grouped LOS Data for Calculating the

Mean
Class Midpoint
Interval (X) f X F(X?)
13-14 13.5 2 27 364.5
11-12 115 3 34.5 396.75
9-10 9.5 8 76 722.0
7-8 7.5 14 105 787.5
5-6 5.5 17 93.5 514.25
3-4 3.5 12 42 147.0
1-2 1.5 2 3 4.5
3 =58 =381 3 =2936.5

Thus, the refined mode is 5.75, and the crude mode is 5.5. You can see from the calcula-
tions for the refined mode that the number of observations in the class interval that is im-
mediately above (f, = 14), the interval containing the mode is pulling the modal value in
that direction. Compare the refined mode to the mode in the ungrouped frequency distribu-
tion for the LOS data in Table 4-5, where the mode is 6. The length of stay—six days—oc-

curred 11 times.

Calculating the Variance and Standard Deviation from Grouped Data

To compute the variance and standard deviation from grouped data, we will use what is
called the raw score formula. The data from Table 4-9 are reproduced in Table 4-10, but we
need to add another column—f(X )—which is the midpoint (X) squared multiplied by the

frequency (f).
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The raw score formula for calculating the variance is
2= XN — 1)

and the standard deviation is
s="V 3 XN - 1)

where the 3x? is

3= f(X?) = [D, (X)?N]

To calculate the variance and standard deviation, we have

D= (X2 - [3, (X)’N]
= 2,936.5 — (381%/58)
= 2,936.5 — 2,502.78
= 4337

2= > XN — 1)
— 433.7/57
— 7.61

and

s="V DN -1)
— \/7.61
—2.76

The variance and standard deviation for our LOS data are 7.61 and 2.76, respectively.
Measures of central tendency and variation for the ungrouped and grouped frequency dis-
tributions are compared in Table 4-11. Note that the grouped distribution results in greater
variation than the ungrouped distribution because only the midpoint of each interval is con-
sidered in the calculations, rather than the entire data set.
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Table 4-11 Measures of Central Tendency
and Variation, Ungrouped Data versus
Grouped Data

Ungrouped Grouped
Distribution Distribution
Mean 6.64 6.57
Median 6 6.26
Mode 6 5.75
Variance 2.76 7.61
SD 1.66 2.76

Percentiles

Health information management professionals are often asked to “benchmark” characteris-
tics of the organization within which we work to the performance of peer organizations. An
example is the semiannual PEPP (Exhibit 4-8) report from the state Peer Review Organi-
zation (PRO), now called Quality Improvement Organizations (QIOs). This report compares
the performance of one hospital against all others in the state on certain DRG pairs. National
DRG data indicated that certain DRGs are subject to “upcoding”—that is, assigning codes
that would move an inpatient discharge from a lower weighted DRG to a higher weighted
DRG. Peer data are used to identify “outliers” that might indicate a health care organization
is “undercoding” or “overcoding” certain types of Medicare cases. The data are reported in
the form of percentiles.

Exhibit 4-8 Example PEPP Paired DRG Report

Hospital State
Median
Indicator 1st DRG 2nd DRG % Higher 10th %tile 90th %tile (50th %tile)
0147/015 67 21 76% 47% 78% 63%
079°/089 27 86 24% 8% 30% 19%
0887/096 61 10 86% 80% 96% 87%
0897/096 86 10 90% 81% 97% 88%
1217/124 37 95 28% 34% 100% 72%
“Denotes higher weighted DRG
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Percentiles are measures of spread and location. They represent the proportion of scores
in a distribution that a specific score is greater than or equal to, or less than or equal to. The
nth percentile of a population, n(p)%, is the number that n(p) of the population fall below,
and n(1 — p)% of the population fall above. Consider the following examples:

95th percentile
90th percentile
75th percentile

95% = n (0.95)
90% = n (0.90)
75% = n (0.75)

A

59 = n(0.95)
10% = n(0.90)
25% = n(0.75)

Vv

50th percentile 50% = n (0.50) 50% = n(0.50)
25th percentile 25% = n (0.25) 75% = n (0.25)
10th percentile 10% = n (0.10) 90% = n(0.10)

The data in Exhibit 4-8 compares hospital-specific data for selected DRGs with state
data. The report indicates that for the DRG pair 014, Intracranial Hemorrhage and Stroke
with Infarction, and 015, Non-Specific Cardiovascular and Precerebral Occlusion without
Infarction, 76% of the cases fell into the higher weighted DRG ([67 + 21]/88 = 76%). This
percentage falls between the 10th and 90th percentiles when compared to all hospitals
within the state. A percentage greater than 78% might indicate that the hospital was upcod-
ing cases from DRG 015 to DRG 014. A percentage below 47% might indicate that the hos-
pital has opportunities for improving the quality of their coding.

The general interpretation for the PEPP report for this state is that for 90% of the hospi-
tals, up to 78% of their cases fall into the higher weighted DRG, and 10% of the hospitals
have up to 47% of their cases fall into the higher weighted DRG. Fifty percent of the hos-
pitals have up to 63% of their cases fall into the higher weighted DRGs. For this hospital,
the ranking for the DRG pair is between the 50th and 90th percentile. This conclusion is that
it does not appear that the organization is upcoding cases for this particular DRG pair.

Calculating Percentile Ranks

To determine a percentile rank, we prepare a frequency distribution table of the length
of stay for patients discharged from DRG 127, Heart Failure and Shock. The length of stay
ranges from 1 day to 27, and are ranked from the longest to the shortest length of stay. We
want to know the percentile rank for a length of stay of five days.
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LOS f cf  Cum%
27 1 60  100.0%
17 1 59 98.3%
14 1 58 96.7%
11 3 57 95.0%
10 3 54 90.0%

9 1 51 85.0%
8 4 50 83.3%
7 6 46 76.7%
6 3 40 66.7%
5 8 a7 61.7%
4 4 29 48.3%
3 10 25 41.7%
2 12 15 25.0%
1 3 3 5.0%

The formula for obtaining the percentile rank is:
percentile rank = (cum f/N) X 100
We can then determine the percentile rank from the cumulative frequency column. Thus:

percentile rank = (cum f/N) X 100
= (37/60) X 100
= 0.617 X 100
=617

The interpretation is that 61.7% of the discharges from DRG 127 have a length of stay of
five or fewer days.

We can also divide a frequency distribution into quartiles. When a distribution is divided
into quartiles we have:

Q; (lower quartile)—25th percentile
Q> (median)—50th percentile
Qs (upper quartile)—75th percentile
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If we “eyeball” the data in the table, the LOS that falls at the 25th percentile is two; the
LOS that falls at the 50th percentile is between four and five days; and the LOS that falls at
the 75th percentile is between six and seven days.

To calculate the LOS of stay for a given percentile, we must first determine which ob-
servation, when placed in rank order, corresponds to that percentile. This is the cumulative
frequency. If we are interested in the length of stay that falls at the 25th percentile, the cu-
mulative frequency (cum f) is calculated as:

Cum f at nth percentile = (percentile rank X N)/100
Cum f at 25th percentile = (25 X 60)/100
Cumf =15

Referring to our table, the cumulative frequency of 15 has a corresponding length of stay
of two days. Thus, the 25th percentile is 2. Twenty-five percent of the discharges from DRG
127 have a length of stay of two or fewer days.

Calculating the LOS that corresponds to the 50th and 75th percentiles is not as straight-
forward because they fall between four and five, and six and seven, respectively. Recalling
the rules for grouping data into class intervals, we can use a general method for determin-
ing the score is:

i(cumf — cumfy)
fi

Score at a given percentile = X;; +

Xi = score at real lower limit of the interval containing cum f
i width of interval
cum f = cumulative frequency of the score

cum f; = cumulative frequency at the real lower limit of the interval containing
cum f

number of scores within the interval containing cum f

=h
I

To calculate the 50th and 75th percentiles (or quartiles) we must first determine the in-
terval that contains the 50th and 75th percentiles:
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cum fsq = (percentile rank X N)/100
= (50 X 60)/100
=30
cum f;5 = (75 X 60)/100
= 45
Thus, we are looking for the LOSs that correspond to the 30th and 45th observations. The

30th observation falls in the interval that corresponds to the LOS of five days, and the 45th
observation fall in the interval that corresponds to seven days. Thus,

i(cumf — cumfy)

= Xu +
fi
1(30 — 29)
Qso=45+ ——
8
= 4.625

and

i(cumf — cumfy)
fi
1(45 — 40)
6

=Xy +

Q75 =65+

=73

Thus, the length of stay that falls at the 50th percentile is 4.6, and the length of stay that
falls at the 75th percentile is 7.3 days.

CONCLUSION

The mean, median, and mode are measures of central tendency that are commonly used to
describe frequency distributions. Measures of central tendency describe the “most
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typical” value or observation in a frequency distribution. The measure used to describe the
distribution should be based on both the scale of measurement and the determination of
which measure best describes the most typical observation in the frequency distribution.
Measures of spread are the variance, the standard deviation, and the range. The range tells
us the distance between the lowest and highest values in a distribution, so in general, it does
not provide much information about the frequency distribution. The standard deviation is
the most common descriptive statistic used to describe the spread of a frequency distribu-
tion for metric variables.

Percentiles are measures of spread and location often used in benchmarking. Percentiles
are used to provide comparative information between health care organizations.
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Appendix 4-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
2. What is the difference between a population parameter and a sample statistic?

3. Compare and contrast the following measures of central tendency: mean, median, and
mode.

4. Define polarization, individuality, and uniformity in relation to variability in a frequency
distribution.

5. Why do measures of central tendency and variation of ungrouped frequency distributions
differ from those of grouped frequency distributions?

MULTIPLE CHOICE

1. There are 40 students in section | of a medical terminology class and 20 students in sec-
tion 1. The mean score on a midterm exam for section | is 60, and the mean score for
section Il is 70. What is the mean score for the two classes combined?

a. 63.3

b. 65

c. 67

d. not enough information provided to answer question

2. For the two scores 8 and 12, E(X - )?)2 is:

coop
B oo AN
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3. In a frequency distribution, the lowest score is 25 and the highest score is 50; the mean
is 37.5. The range is:
a. 11
b. 12.5
c. 24
d. 25

4. In grouping a set of scores from a frequency distribution, the width of the class intervals
should:
a. be equal
b. be at least one
c. vary according to the frequency within the interval
d. be no more than 10

5. The first class interval in the grouped frequency distribution is 5-10. The width of the
interval is:
a. 5
b. 5.5
c. 6
d. 6.5

6. The midpoint of the class interval 5-10 is:
a. 7
b. 7.5
c. 8
d. 85

7. The width of a class interval is 3. The midpoint is 9. The apparent lower limit of the in-
terval is:
a. 7
bh. 7.5
c. 8
d. 85

8. The “real limits” of the class interval 1-3 are:
a. 0.5-35
b. 1-3
c. 0-4
d. 1.5-2.5

The following table displays a cumulative frequency distribution of the length of stay of
patients discharged from Community Behavior Health Care during the week of April 1. Use
the table below to answer questions 9 through 14.



10.

11.

12.

13.

14.

Multiple Choice

Class Interval for

Length of Stay f Cum.f  Cum. %
20-24 4 20 100
15-19 8 16 80
10-14 6 8 40
5-9 0 2 10
0-4 2 2 10

Six patients had lengths of stay that fall:
a. below 14.5 days

b. at 12 days

c. above 9.5 days

d. between 9.5 days and 14.5 days

Twelve patients had lengths of stay that were greater than:
a. 14.5 days

b. 15 days

c. 17 days

d. 19.5 days

Sixteen patients had lengths of stay below:
a. 20 days

b. 19.5 days

c. 17 days

d. 14.5 days

The cumulative frequency value of “8” means that 8 cases fall below:
a. 14.5 days

b. 14 days

c. 12 days

d. 10 days

Forty percent of the patients discharged had lengths of stay that fell below:
a. 14.5 days

b. 14 days

c. 12 days

d. 10 days

Eighty percent of the patients discharged had lengths of stay that fell below:
a. 19.5 days

b. 19 days

c. 17 days

d. 14.5 days

117
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15. Which of the following is not a measure of spread?
a. mode
b. range
c. standard deviation
d. variance

16. Review the following two frequency distributions:

1: 200 210 190 220 195
2: 210 170 180 235 240

The standard deviation for distribution 1 is:
a. the same as that for set 2

b. less than that for set 2

c. greater than that for set 2

d. not enough information provided

17. The standard deviation of a frequency distribution is 5. The variance is:
10

15

20

25

e. not enough information provided

oo o

18. In a frequency distribution, the mean is 32. If each score is divided by 2, the mean of
the new distribution is:
a. 64
b. 32
c. 16
d. not enough information provided

19. In the frequency distribution 4 4 5 7, the number 4 is the:
a. mean
b. mode
c. median
d. range

20. Review the grouped frequency distribution that follows:

Class
Interval

-

40-44
35-39
30-34
25-29
20-24

ANOOWN
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After the data were grouped into class intervals, it was determined that a value of 35
was really a value of 39. Correcting this error will change the calculated value of:

. the mean
. the median
. the mode

all of the above
. hone of the above

21. A percentile rank may take on any of the following values except:

oo o

. 37
50
. 874
103

PROBLEMS

1. Review the data in Tables 4-A-1 and 4-A-2 and answer the questions that follow. Use
an electronic spreadsheet to assist you in preparing the answers.

Table 4-A-1 Male Deaths Due to Leukemia
(ICD-9-CM Codes 200.0-200.9) in the state of

Table 4-A-2 Female Deaths Due to Leukemia
(ICD-9-CM Codes 200.0-200.9) in the state of

Ohio, 1998 Ohio, 1998
Leukemia Leukemia
Age Deaths Age Deaths
Group in Men p Cum.p M f{(M) Group inWomen p Cum.p M f(M)
5-14 16 5-14 6
15-24 20 15-24 10
25-34 27 25-34 9
35-44 63 35-44 26
45-54 118 45-54 61
55-64 194 55-64 132
65-74 388 65-74 296
75-84 418 75-84 463
85+ 124 85+ 194
Total 1,368 Total 1,197

Source: United States Department of Health and Human
Services, Centers for Disease Control and Prevention
(CDC), CDC Wonder On-Line Database, wonder.cdc.gov.

Source: United States Department of Health and Human
Services, Centers for Disease Control and Prevention
(CDC), CDC Wonder On-Line Database, wonder.cdc.gov.
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What is the mean age of death for men? For women?

What are the crude modes and median ages of death for men? For women?

What are the refined mode and the refined median for men? For women?

Compare and contrast the crude and refined results for each group. Explain any dis-
parities that may exist.

In analyzing the results of your data for men and women, what conclusions can you
draw?

2. Use the data of the ages of 61 patients discharged from DRG 127, Heart Failure and
Shock, that appear in Exhibit 4-A-1 to solve the following:

Exhibit 4-A-1 Ages of 61 Patients Discharged from DRG
127, Heart Failure and Shock

37 51 60 65 75 80
37 51 60 65 76 80
39 52 61 66 76 82
39 53 63 66 7 83
42 54 63 69 7 83
47 54 63 70 7 84
47 56 64 72 78 85
47 57 64 73 79 86
49 57 64 73 80 87
51 59 64 75 80 88

88

Use statistical software to calculate the mean, median, mode, variance, and standard
deviation for the ungrouped frequency distribution and to prepare a frequency table.

. Group ages into class intervals. Prepare a table that displays the frequencies for each

class interval, the cumulative frequency, the relative proportion, and the cumulative
percent.

Compute the mean, median, mode, variance, and standard deviation for the grouped
data.

Compare the results of the grouped and ungrouped frequency distributions.
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3. The lengths of stay for a group of patients discharged from DRG 127 are presented in
Exhibit 4-A-2.

Exhibit 4-A-2 Length of Stay for Patients Discharged from
DRG 127, Heart Failure and Shock

1 2 3 5 8 14
1 3 3 5 8 15
1 3 3 5 8 16
1 3 3 5 10 17
1 3 3 5 10 27
1 3 3 6 10 36
2 3 4 6 10
2 3 4 6 11
2 3 4 6 11
2 3 4 7 11
2 3 4 8 13

a. Use statistical software to calculate the mean, median, mode, variance, and standard
deviation for the ungrouped frequency distribution and to prepare a frequency table.

b. Group ages into class intervals. Prepare a table that displays the frequencies for each
class interval, the cumulative frequency, the relative proportion, and the cumulative
percent.

c. Compute the mean, median, mode, variance, and standard deviation for the grouped
data.

d. Compare the results of the grouped and ungrouped frequency distributions.

CLASSACTIVITY

An important aspect of the health information manager's job is to be able to collect and an-
alyze data. But data are not always useful in their raw form; they must be turned into infor-
mation. This activity is designed to provide you with the experience in preparing a written
report based on the analysis of the collected data. For this activity, you will:

a. set up an SPSS (or other microcomputer statistical package) data sheet

b. define and label variables for the data sheet

€. summarize data

d. prepare charts and graphs
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Instructions
1. Complete the survey that follows these instructions.

2. Turn the survey in to the instructor. Copies of each student's responses will be distrib-
uted to the class.

3. Set up the SPSS (or other) data sheet. Define the variables for the data input sheet. Cat-
egorical variables have been coded on the data sheet. An example of how to enter the
variable information on the data sheet appears in Figure 4-A-1.

4. Input the data from each completed survey onto the data sheet.

Figure 4-A-1 Example of How to Enter Variable Information for Class Activity on SPSS Data Sheet.
Source: SPSS 12.0 for Windows, Copyright SPSS, Inc., 2003.

=(@|8| 8| »| 5] =[]

5. Answer the questions that follow.

6. Prepare a two- to three-page written report describing the characteristics of the HIM
class based on your analysis of the data. Include statistical tables, charts, and/or graphs
to support your findings.
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Survey Questions

1.
2.
3.

10.

11.

12.

13.

What percentage of students live on campus? Off campus?
What percentage of the class is female? Male?

What is the average height of the class? What is the average height of the men in the
class? What is the average height of the women in the class?

What are the average heights of the mothers and the fathers?

What proportion of the class is right-handed? What percentage of the mothers is right-
handed? How many fathers are right-handed?

Prepare a bar graph that displays the actual frequency distribution of the hair color of
your classmates. What is the modal hair color? Prepare a pie chart that displays hair
color by percentage.

Prepare a table displaying the frequency distribution of the eye color of your classmates.
What proportion of the class went to a public high school?

What is the average amount of time that the class spends studying for HIM classes? Pre-
pare a histogram that displays the frequency distribution of time spent studying.

What is the average amount of money spent on haircuts for the class? What is the av-
erage amount for men? For women?

What is the average amount of CDs owned by the class? How many CDs do the men
own? The women?

What is the average amount of time spent exercising by the class per week? What is the
average amount of time for men? For women?

What is the average number of hours per week spent watching television? What is the
average amount of time for men? For women?

HIM CLASS SURVEY

1.

2.

3.
4,

Where do you live?
O campus housing @
O off-campus housing 2

Sex
O male (1)
O female (2)

What is your height in inches?

What is your father's height in inches?
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5. What is your mother's height in inches?
6. What is your shoe size (length, not width)?

7. Do you smoke?
O yes @
O no 2
O occasionally 3

8. Are you:
O left-handed (D)
O right-handed  (2)

9. Is your father:
O left-handed @
O right-handed  (2)

10. Is your mother:
O left-handed @
O right-handed  (2)

11. What is your hair color?

O black (1)
O brown (2)
O blond (3)
O red 4
O other  (5)
12. What is your eye color?
O black (1)
O brown (2)
O blue (3)
O green  (4)
O gray (5)
O hazel  (6)
O other  (7)
13. What type of high school did you attend?
O public high school 1)
O private high school (2

14. On average, how many hours per week do you spend studying for HIM classes?

15. How much did you spend, to the nearest dollar, on your last haircut, including tip?

16. How many CDs do you own?
17. On average, how many hours per week do you spend exercising?

18. On average, how many hours per week do you spend watching television?



CHAPTER 5

The Normal Distribution and
Statistical Inference

KEY TERMS  Normal distribution Sampling methods
Symmetrical Simple random sampling
Asymptotic curve Stratified random sampling
Skewness Systematic sampling
Kurtosis Cluster sampling
z values Null hypothesis
Standard normal distribution Alternative hypothesis
Standard normal deviate Type | error
Point estimate Type Il error
Central limit theorem Level of significance
Standard error of the mean p value
Confidence interval
LEARNING At the conclusion of this chapter, you should be able to:
OBJECTIVES 1. Define key terms.
2. Describe the characteristics of the normal distribution and the

3.

o &

standard normal distribution.

Compare and contrast the normal distribution and the standard
normal distribution.

Compare the standard deviation and the standard normal deviate.
Convert normal distributions to standard normal distributions us-
ing computer statistical software.

Explain the central limit theorem.

Calculate the standard error of the mean and confidence intervals
for samples.

Explain how sample size and variation affect the standard error of
the mean.
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9. Explain the following sampling techniques: simple random sam-
pling, stratified random sampling, systematic sampling, and clus-
ter sampling.

10. Explain the differences between the null and alternative hypothe-
ses.

11. Explain the factors that affect type | and type Il errors.

12. Differentiate between the alpha level and the p value.

13. ldentify the factors that influence sample size.

14. Calculate sample size for given situations.

Much of statistical inference is based on the normal distribution, also called the Gaussian
distribution for Johann Karl Gauss, the person who best described it. The normal distribu-
tion is not a single distribution, but an infinite number of possible distributions. This is im-
portant in statistical inference because the population mean can take on any positive or
negative value, and the population standard deviation can take on any positive or negative
value. Thus, the normal distribution is the most widely used theoretical distribution; many
naturally occurring phenomena, such as blood pressure, height, and weight, approximate the
normal distribution.

CHARACTERISTICS OF THE NORMAL DISTRIBUTION

There are several characteristics of the normal distribution with which you should be fa-
miliar. First, the curve is bell-shaped and symmetrical about the mean (the population mean
is symbolized by ., pronounced “mu”). Second, because the distribution is symmetrical,
approximately 50% of the observations lie above the mean and 50% of the observations lie
below the mean. The total area under the curve is equal to 1.00. Third, in a normal distri-
bution, the mean, median, and mode are equal. The values of the normal distribution range
from minus infinity (—o°) to plus infinity (+°).

As we move out from the center of the normal curve bilaterally, the height of the curve
descends gradually at first, then faster, and finally more slowly as it approaches the hori-
zontal axis. Each tail of the curve approaches the x-axis but never touches it, no matter how
far from center we go. This type of curve is called an asymptotic curve because it is con-
sidered asymptotic to the horizontal axis.

Figure 5-1 displays the normal distribution and how the values in the distribution are
arranged around the population mean, .. Approximately 68% of the values lie within 1 stan-
dard deviation from the mean (. = 1.68 o); 95% of the observations lie within 1.96 stan-
dard deviations from the mean (. £ 1.96 o); and 99% of the observations lie within 2.58
standard deviations of the mean (. = 2.58 o). These characteristics of the normal curve are
important when making inferences about population parameters from sample statistics. The
symbols used to distinguish between population parameters and sample statistics appear in
Table 5-1.

In a normal distribution, we know that the population w can take on any value and that
the population w is the midpoint of the distribution. Compare Figures 5-1 and 5-2. Even
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Figure 5-1 Histogram of Normal Distribution 1
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Table 5-1 Statistical Symbols

Population Sample
Parameter Statistic

Mean n X
Variance G s?
Standard Deviation o2 s

though the means for each distribution—6 and 15, respectively—are different, the shapes of
the distributions are the same. Any change in w without a corresponding change in o does
not change the shape of the distribution. However, changes in the value o do change the
shape of the distribution but do not affect the midpoint. Basically, changes in o affect the
dispersion of the values in the distribution. Dispersion can affect the skewness of the
distribution.

A frequency distribution that is asymmetrical is skewed, and in this case the mean, me-
dian, and mode will take on different values. Skewness is the horizontal stretching of a fre-
quency distribution to one side or the other, so that one tail is longer than the other. The
longer tail has more observations. Because the mean is sensitive to extreme values, the mean
moves in the direction of the long tail when a distribution is skewed. When the direction of
the long tail is off to the right, the distribution is said to be positively skewed, or skewed to
the right. Conversely, when a distribution’s long tail is off to the left, the distribution is said
to be negatively skewed, or skewed to the left. We can determine if a distribution is skewed
through SPSS by checking these items in the dialog box after requesting “Frequencies” or
“Descriptives” from the “Analyze” menu. An obtained skewness value greater than 1 is an
indication that the distribution differs significantly from normal. Another way to assess the
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Figure 5-2 Histogram of Normal Distribution 2
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skewness of a distribution is to compare the mean and median. If the mean and median ap-
proximate one another, the distribution is probably not significantly skewed.

Kurtosis is the vertical stretching of the frequency distribution. If the distribution appears
to be more peaked or more flattened than the normal distribution, it is considered to be kur-
totic. For a normal distribution, the value of the kurtosis statistic is zero. A positive kurto-
sis indicates that the frequency distribution has longer tails than the normal distribution and
that the observations are clustered toward the center (peakedness). If the kurtosis statistic is
negative, the frequency distribution has tails shorter than the normal distribution, and there
is less clustering of the observations (flattened).

THE STANDARD NORMAL DISTRIBUTION (z DISTRIBUTION)

Since there are number of normal distributions, which may have any mean and any standard
deviation, the observations in the distribution must be standardized when we want to make
comparisons between distributions. When we standardize a frequency distribution, such as
one for the variable “age,” we are transforming the units of measurement (age) to a unit-free
form—that is, the age units become z values. The z distribution is referred to as the stan-
dard normal distribution; it has a mean of 0 and a standard deviation equal to 1. The z
value, also called the standard normal deviate, is the number of standard deviation units
that the observed value lies away from the mean, . Transforming our raw observations to
z values makes it possible to make comparisons between distributions.

In the standardized normal distribution, the area between the z values of =1.0 is 68%, the
area between the z values of =1.96 is 95%, and the area between +3 and —3is 99.7%. Any
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normal distribution may be transformed into a standardized normal distribution through the
formulas in Exhibit 5-1. The transformation of a set of observations to z values is a linear
transformation that does not change the shape of the distribution. This is illustrated in Fig-
ure 5-3, where the normal distribution in Figure 5-1 is transformed into a standard normal
distribution with a mean equal to 0 and a standard deviation equal to 1.

Exhibit 5-1 Formulas for Transforming Observed Scores into z Scores

z Values in a Population z Value in a Sample

z=X-— o z=(X-X)ls

Where X is the value of the observation, . is the ~ Where X is the value of the observation, X is the
mean of the population distribution, and o is the ~ mean of the sample distribution, and s is the stan-
standard deviation of the population distribution. dard deviation of the sample distribution.

Figure 5-3 Standard Normal Distribution
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For a “real-life” example, we will now compare a normal distribution with a standardized
normal distribution to explain some of these concepts. In Table 5-2, a frequency distribu-
tion of the age of 100 nursing home residents is displayed. Using these data, we will con-
struct a histogram of the frequency distribution for age using SPSS. We will also request
descriptive statistics and statistics on skewness and kurtosis to evaluate the “normality” of
the distribution. The histogram appears in Figure 5-4.
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Table 5-2 Frequency Distribution of Age of 100 Nursing
Home Residents

Age

Frequency % Valid %  Cumulative %

Valid 65.00 3 3.0 3.0 3.0
66.00 3 3.0 3.0 6.0
67.00 4 4.0 4.0 10.0
68.00 2 2.0 2.0 12.0
69.00 3 3.0 3.0 15.0
70.00 3 3.0 3.0 18.0
71.00 4 4.0 4.0 22.0
72.00 5 5.0 5.0 27.0
73.00 4 4.0 4.0 31.0
74.00 5 5.0 5.0 36.0
75.00 12 12.0 12.0 48.0
76.00 5 5.0 5.0 53.0
77.00 6 6.0 6.0 59.0
78.00 7 7.0 7.0 66.0
79.00 4 4.0 4.0 70.0
80.00 7 7.0 7.0 77.0
81.00 4 4.0 4.0 81.0
82.00 4 4.0 4.0 85.0
83.00 3 3.0 3.0 88.0
84.00 2 2.0 2.0 90.0
86.00 1 3.0 3.0 93.0
87.00 1 1.0 1.0 94.0
88.00 1 1.0 1.0 95.0
89.00 1 1.0 1.0 96.0
90.00 3 3.0 3.0 99.0
91.00 1 1.0 1.0 100.0
Total 100 100.0 100.0

The descriptive statistics in Exhibit 5-2 indicate that the mean, median, and mode are
similar; 76.36, 76.0, and 75, respectively. We will interpret the distribution as “normal” be-
cause of the similarity between the three measures of central tendency. The skewness statis-
tic is 0.261, indicating that the distribution does not depart significantly from normal.
However, the distribution is somewhat flat, as indicated by the kurtosis statistic, —0.281.

We will now convert our “normal” distribution to a standardized normal distribution. The
histogram and descriptive statistics appear in Figure 5-5 and Exhibit 5-4 respectively. We
can convert the scores to standard scores by checking the “Save standardized values as vari-
ables” option in the “Descriptives” dialog box, as shown in Exhibit 5-3. The SPSS program
will create and save a new variable on the data sheet. The mean of the new standardized dis-
tribution is 0, and the standard deviation is 1. Though “the bars” on the standardized his-
togram are not exactly the same as those in Figure 54, the skewness statistic and kurtosis
statistic remain the same, indicating that the shape of the distribution did not change when
the distribution was standardized.
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Figure 5-4 SPSS Output for Histogram on Ages of Nursing Home Residents
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Exhibit 5-2 SPSS Output of Descriptive Statistics,
Age of Nursing Home Residents

N Valid 100

Missing 0
Mean 76.3600
Median 76.0000
Mode 75.00
Std. Deviation 6.23856
Variance 38.920
Skewness 0.261
Std. Error of Skewness 0.241
Kurtosis —0.281
Std. Error of Kurtosis 0.478
Range 26.00
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Exhibit 5-3 SPSS Screen for Requesting Standardized Variables.
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Source: SPSS 12.0 for Windows, SPSS, Inc., 2003.

Exhibit 5-4 SPSS Output for Standardized Descriptive Sta-
tistics on Ages of Nursing Home Residents

Z score(AGE)
N Valid 100
Missing 0
Mean .0000000
Median —.0577057
Mode —.21800
Std. Deviation 1.00000000
Variance 1.000
Skewness 261
Std. Error of Skewness 241
Kurtosis -.281
Std. Error of Kurtosis 478
Range 4.16763
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Figure 5-5 SPSS Output for Histogram on Ages of 100 Nursing Home Residents, Standardized Distribution
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STATISTICAL INFERENCE

In analyzing health care data, we are usually dealing with data that represent a sample drawn
from a larger population. We want to use the sample statistics to describe the larger popula-
tion. A single sample statistic such as the mean is actually a point estimate. A point esti-
mate is a single numerical value computed from the sample that is assumed to best represent
the actual population parameter. The properties of the sampling distribution are similar to
those of a normal distribution. If the population is normally distributed with a mean . and
a standard deviation o, the sampling distribution of X has the following properties:

1. It has a mean equal to the mean for the population from which the samples were
drawn, pz =

2. It has a standard deviation equal to the population standard deviation divided by the
square root of the sample size, oz = oVn B

3. It is normally distributed. The sampling distribution of X is approximately normal
when sampling is from a non-normal population distribution. As the sample size in-
creases, the sample's approximation to normality improves (central limit theorem).
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CENTRAL LIMIT THEOREM

When we draw inferences from our sample, we are assuming that the sample represents a
frequency distribution that is normally distributed. When a graph of our sample appears nor-
mal, we assume that the population from which the sample was drawn is also normally dis-
tributed. This is true regardless of the size of the sample drawn from the same population.
However, many populations are not normally distributed. Regardless of the type of popula-
tion distribution, the sampling distribution, if sufficiently large, is approximately normal.
The central limit theorem summarizes the relationship between the shapes of the popula-
tion distribution and the sampling distribution of the mean, X:

If repeated random samples of size N are drawn from a population, and if a mean is
calculated for each sample, the distribution of the sample means approaches the
normal distribution as N becomes large. The mean of the sampling distribution will
approach the population mean, w. This is true even if the population distribution is
not normal.

The central limit theorem assures us that regardless of the shape of the population distri-
bution, the sampling distribution of X approaches normality as the sample size increases.
This is true even when data in individual samples are skewed. In reality, the samples do not
have to be very large for the sampling distribution of X to be approximately normal. In most
instances, the approximation to normality is quite rapid as N increases.

These concepts can be illustrated by using the age of nursing home residents’ data. Re-
call that the population mean is 76.4 and the population standard deviation is 6.2. A simple
random sample of 38 nursing home residents was drawn from the population. A frequency
distribution for the sample is displayed in Table 5-3, and a histogram is displayed in Figure
5-6. The sample mean is 75.2 (Exhibit 5-5), and the sample standard deviation is 6.2. The

Exhibit 5-5 SPSS Output for Standardized Descriptive Statis-
tics on Ages of a Sample of 38 Nursing Home Residents

Valid N

AGE (listwise)

N 38 38
Minimum 65.00
Maximum 90.00
Mean 75.1842
Std. Deviation 6.15500
Variance 37.884
Skewness .255
Std. Error for Skewness .383
Kurtosis —.541

Std. Error for Kurtosis .750
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Table 5-3 Frequency Distribution of Random Sample of Ages
of Nursing Home Residents

Age Frequency % Valid % Cumulative %
65.00 1 2.6 2.6 2.6
66.00 2 5.3 5.3 7.9
67.00 2 5.3 5.3 13.2
68.00 2 5.3 5.3 18.4
69.00 1 2.6 2.6 21.1
70.00 1 2.6 2.6 23.7
71.00 2 5.3 5.3 28.9
72.00 3 7.9 7.9 36.8
73.00 2 5.3 5.3 421
74.00 3 7.9 7.9 50.0
75.00 2 5.3 5.3 55.3
76.00 1 2.6 2.6 57.9
77.00 1 2.6 2.6 60.5
78.00 3 7.9 7.9 68.4
79.00 1 2.6 2.6 7141
80.00 3 7.9 7.9 78.9
81.00 2 5.3 5.3 84.2
82.00 2 5.3 5.3 89.5
83.00 1 2.6 2.6 92.1
84.00 1 2.6 2.6 94.7
86.00 1 2.6 2.6 97.4
90.00 1 2.6 2.6 100.0
Total 38 100.0 100.0

Figure 5-6 Histogram of Ages of 38 Nursing Home Residents
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sample distribution does not significantly depart from normality, as indicated by the skew-
ness statistic of 0.255, which is less than one. However, the distribution is flatter than the
population distribution, as indicated by the kurtosis statistic of —0.541. The difference be-
tween the population parameters and the sample statistics is sampling error.

STANDARD ERROR OF THE MEAN

When inferences are made about normally distributed data, conclusions are based on the re-
lationships of the standard deviation and mean to the normal curve. The mean of the sam-
ple may or may not be the same as the population mean. The difference between the sample
mean and the population parameter . is sampling error. For example, if we draw three dif-
ferent samples from a population, we will get three different means. In addition, if we take
many samples from the same population, we will have as many different means, and these
means will be normally distributed. The mean of the means will be close to the true popu-
lation mean.

To determine how close the sample mean is to the population mean, we find the standard
deviation of the distribution of means. The standard deviation of the distribution of means
is called the standard error of the mean, or standard error. The smaller the standard error,
the closer the sample mean is likely to be to the population mean. However, we do not need
to draw a lot of samples to calculate the standard error; it can be calculated from a single
sample:

standard error of the mean (SE) = s/'Vn

The standard error is influenced by the standard deviation and the sample size. The
greater the dispersion around the mean, the less certain we are about the actual population
mean, and the greater the standard error of the mean. The larger the sample size, the more
confidence we have in the mean and the smaller the standard error of the mean. The smaller
the standard error, the more reliable the statistic.

The effects of sample size and standard deviation on the standard error are illustrated in
the following examples. In a hypothetical frequency distribution on the average age of col-
lege graduates, the mean is 22.5 and the standard deviation is 3.5. With a sample size of 100,
the standard error of the mean is 0.35; if we increase the sample size to 200, and the mean
and standard deviation remain the same, the standard error of the mean decreases to 0.25. If
the sample size remains at 100 but the standard deviation increases to 5.5, the standard er-
ror of the mean increases to 0.55. These data are summarized in Table 5-4.

The data in Exhibit 5-6 further illustrate these principles. Using SPSS, three simple ran-
dom samples were drawn from our population of 100 nursing home residents in which the
mean is 76.4 and the standard deviation is 6.24.
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Table 5-4 Statistical Comparisons by Sample

Size

Sample 1 Sample 2 Sample 3
N 100 200 100
Mean 225 22.5 225
SD 3.5 3.5 5.5
SE 0.35 0.25 0.55

Exhibit 5-6 Three Random Samples of Ages of Nursing Home Residents

Random Sample 1 Random Sample 2 Random Sample 3
Age N Age N Age N
66 1 65 3 65 1
67 1 66 1 66 3
68 1 70 2 65 2
70 1 72 2 68 1
73 1 73 1 69 2
75 1 75 3 70 2
78 1 76 1 71 3
80 1 e 3 72 1
81 1 78 1 73 2
82 1 80 4 74 5
86 1 81 4 75 2
89 1 82 2 76 2
90 1 83 1 77 3
84 1 78 4
89 1 79 2
90 2 80 3
91 1 81 3
82 2
83 1
84 1
85 1
88 1
90 1
Total 13 33 48
Mean 77.3 77.7 75.5
S.E. Mean 2.285 1.242 0.874
Variance 67.90 50.92 36.64
SD 8.24 7.14 6.05
Population Mean = 76.4
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The sample size in sample 1 is 13 and the mean, 77.3, is 0.9 units above the population
mean. In sample 2, the sample size is 33, and the mean, 77.7, is 1.3 units above the popula-
tion mean. The standard deviation for sample 1 (s = 8.24) is greater than that for sample 2
(s = 7.14), indicating more variation and a greater standard error for sample 1 over sample
2—8.24 versus 7.14, respectively.

However, when we increase the sample size to 48, the observed mean, 75.5, and the stan-
dard deviation, 6.05, are less than in either of the previous two samples; there is also a cor-
responding decrease in the standard error, which is 0.874 for sample 3.

CONFIDENCE INTERVALS

The sample mean, X, is a point estimate of the population mean, . With the additional
information of the standard error of the mean, sz, and our knowledge of the normal curve,
we can estimate the limits within which the true population mean probably lies. This is
called a confidence interval on p, and gives a range of values that might reasonably con-
tain the true population mean. The confidence interval is represented as

a<=un<=bh

Using the data from sample 1 in Exhibit 5-6, we can add and subtract the standard error
of the mean from the sample mean:

point estimate + error = X, + sy = 77.3 = 2.285
750 = =796

The results indicate that the true population mean falls within =1 standard error on each
side of the sample mean. This is interpreted as meaning that if we draw a number of sam-
ples from the population, 68% of these sample means will fall between 75.0 and 79.6. From
this we can infer that we are 68% confident that the population mean lies within these
limits.

But when developing confidence intervals, we generally want to be more confident about
the sample statistic. Generally, the confidence intervals are set at 95%. As noted earlier in
this chapter, 95% of the area under the standard normal curve lies between +1.96 and
—1.96 standard deviations of the mean. The 95% confidence interval (Clgs) may be con-
structed as follows:

Clgs = X =+ 1.96(sg)
Substituting into our formula the Clgs for sample 1 in Exhibit 5-6 yields

Clgs = 77.3 + 1.96(2.285) = 77.3 = 4.48
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Thus, we can say that we are 95% confidant that our true population mean lies between
72.8 and 81.8. This confidence interval is expressed as:

72.8. = pn =818

As you can see from the population data in Exhibit 5-6, the true population mean, 76.4,
lies within this band. Note that by increasing the confidence interval from 68% to 95% we
have increased the range within which the true mean may fall. Increasing the size of the con-
fidence interval increases our confidence that the true population mean lies within that
interval.

Correspondingly, we can compute the Clgs for samples 2 and 3:

Sample 2
Clgs = 77.7 = 1.96(1.242) = 77.7 = 2.4343
753 =wu=280.1
Sample 3
Clgs = 75.5 = 1.96(0.874) = 75.5 =£1.713
738=u=1772

Sample 1 has the greatest variation, as indicated by the standard deviation; thus, it also
has the greatest standard error and the widest confidence band.
The general formula for calculating the confidence interval is

Cl, =X * afsy)

where a is the confidence coefficient. For the normal distribution, the 95% confidence in-
terval, the confidence coefficient is equal to 1.96; for a confidence interval of 99%, the con-
fidence coefficient is equal to 2.58 (*2.58 standard deviations from the mean).

SAMPLING METHODS

Before we can make inferences about a population, we must select a sample. Samples
should be as representative of the underlying population as possible. If the sample is repre-
sentative, inferences made from the sample about the population will be correct. There are
two general sampling techniques: probability and nonprobability sampling. In probability
sampling, each member of a population has a known probability of being selected for the
sample. Nonprobability samples are those in which members of a sample are deliberately
selected for a specified purpose. One example is the selection of patients admitted to the
emergency department in January to study the effects of a new anticoagulant. In nonproba-
bility sampling, generalization of results to a population is extremely limited. Nonprobabil-
ity sampling is often used in conducting clinical trials.

We will limit our discussion to several methods of probability sampling: simple random
sampling, stratified random sampling, systematic sampling, and cluster sampling. In
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simple random sampling, each member of a population has an equal chance of being se-
lected for inclusion in the sample. The selection of one member of the population has no in-
fluence on the selection of another. The drawing of numbers in state lotteries is an example
of a simple random sample.

Occasionally we are interested in studying different strata within a population. A stratum
is a variable by which the population can be subdivided. Common examples in health care
include dividing the human population by age or sex, or categorizing acute care facilities by
size. Basically, we group the population into subcategories. In stratified random sampling,
we want to draw a sample so that each stratum within the population is proportionately rep-
resented in the sample. Before drawing the sample, we must divide the population into the
strata we are interested in studying and then randomly draw the appropriate sample from
each stratum. If we are studying a problem where sex is an important variable, we will want
a stratified sample that is composed of 50% men and 50% women.

In systematic sampling, we select every kth member of a population from a list—such as
selecting the records of every 5th patient discharged for closed medical record review. If we
want to select a sample of 10 from a population of 100, we will select every 10th name from
the discharge list. Caution must be exercised with systematic sampling if the list is ordered
in any way. For example, if a list of university students is listed by class rank, the resulting
sample may not be representative of the population. In systematic sampling, every member
of the population does not have an equal chance of being selected for the sample. Selection
for inclusion in the sample is dependent upon the first member selected for inclusion in the
sample.

In cluster sampling, the sampling units are groups rather than individuals. For example,
if we want to survey physicians in the state of Ohio, we can define the population as physi-
cians practicing in acute care facilities in the state of Ohio. The units to be sampled are hos-
pitals—clusters; then, from each hospital included in the sample, a sample of physicians is
surveyed. This is two-stage sampling. We first randomly select hospitals, and then randomly
select physicians that practice at the hospitals.

HYPOTHESIS TESTING AND STATISTICAL SIGNIFICANCE

With statistical inference, we are interested in making generalizations about a particular
population from a sample drawn from that population. When we generalize, we are de-
scribing the population from our sample statistics. Often, however, we are interested in de-
termining whether two population means are different with respect to a given variable, such
as age, length of stay (LOS), and/or total charges. To determine whether two means are dif-
ferent, we must first develop a hypothesis and perform a statistical test to determine if the
observed differences between the means are statistically significant. We want to know
whether the observed difference between the group means is greater than what would be ex-
pected by chance alone.

To understand the concept of statistical significance, consider the following example.
Let’s say that the researcher is interested in determining whether physician A’s practice pro-
file is superior to physician B’s, as indicated by the LOSs of their respective patients. The
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researcher will evaluate the differences between practice profiles of these two physicians on
the basis of the patients’ average length of stay (ALOS) for physicians A and B. In addition,
the researcher will want to know if the “observed” difference between the two mean LOSs
is due to something other than measurement error. The observed differences in the patients'
mean LOSs could be due to the following reasons:

1. The practice profile of physician A is actually superior to the practice profile of physi-
cian B.

2. Some confounding factor that was not controlled in any way, such as the age or type
of patient, may account for the difference.

3. Random variation could account for the difference.

Only after the second and third reasons have been ruled out can we say that the practice
profile of physician A is superior to the practice profile of physician B. To rule out reason
2, we have to design a study that does not permit any extraneous factors that might bias the
comparison. To rule out reason 3, we test for statistical significance.

But before we select a statistical test for comparing the two means, we must develop a hy-
pothesis for statistical testing. For tests involving the comparison of two or more groups, the
null hypothesis states that there is no difference between the population means from which
the two samples were drawn. The null hypothesis is consistent with the idea that the ob-
served difference between the means of two or more groups is due to random variation in
the data. The null hypothesis is expressed as

Ho: pa = ps

The interpretation is that the population mean for group A is equal to the population mean
for group B.

After we have developed the null hypothesis, we must state the alternative hypothesis. The
alternative hypothesis states what our theory is, or what we expect to happen as a result of
the statistical test. The alternative hypothesis may take one of several forms:

1. Halpa # ps
2. Hal pa < ps
3. Hal pa > pg

In the first example, we are stating that we expect that the two population means will not
be equal. We are interested only in whether the observed differences between the two pop-
ulation means are significant. In the latter two examples, we are stating a direction in which
we expect the population means to differ. In the second example, we are stating that we ex-
pect the mean for population A to be significantly less than the mean for population B. In
the third example, we are stating that we expect the mean for population A to be greater than
the mean for population B.

For our comparison of the practice profiles of the two physicians, our alternative hypoth-
esis will take the form of the second example. This could indicate that physician A was su-
perior to physician B with regard to LOS.
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LEVEL OF SIGNIFICANCE

To determine if physician A is more effective than physician B, we select an appropriate test
of statistical significance and establish an appropriate alpha level, such as « = 0.05 or 0.01.
The alpha level is the maximum probability of rejecting the null hypothesis when it is true.
This is referred to as a type | error. If alpha is set at 0.05, we run a 5% risk of error when
we reject the null hypothesis—that is, when we state that the means of the two groups are
different. A type Il error occurs when we accept the null hypothesis when it is false.

The null hypothesis is rejected only if the sample results are so different from the hy-
pothesis that the probability of such a difference occurring by chance alone is very low or
insignificant. The lower the significance level—for example, « = 0.01—the more the sam-
ple data must depart from the null hypothesis to be statistically significant. An alpha set at
0.01 is considered to be more strict than an alpha set at 0.05—that is, it is more difficult to
reject the null hypothesis when alpha is set at 0.01.

When we reject the null hypothesis, we actually support what we believe to be true. Re-
jecting the null hypothesis supports our theory. Failure to reject the null hypothesis does not
mean that the null hypothesis is true; it only means that we did not prove that the observed
difference between the means of the two groups was statistically significant beyond a rea-
sonable doubt. The level of significance refers to the probability of making a type | error.
For a type | error, the level of significance is designated by « (alpha). The level of signifi-
cance is usually set at 0.01 or 0.05. For small sample sizes, alpha is usually set at 0.05; for
large sample sizes, alpha is usually set at 0.01. This is because it is easier to achieve statis-
tical significance with large samples. If the significance for « is set at 0.05 and the null hy-
pothesis is rejected, the probability of a type | error is 5%. In the long run, with the drawing
of multiple samples from the same population, the rejection of a true null hypothesis will
occur 5% of the time. Conversely, the sample data will justify accepting the true null hy-
pothesis 95% of the time.

The probability of committing a type Il error is designated by B (beta). Type Il errors oc-
cur only when we incorrectly fail to reject the null hypothesis. Because the level of signifi-
cance is set to reduce the probability of type I error, the probability of a type Il error is
increased. However, the probability of making a type Il error decreases as the sample size
increases. Table 5-5 shows the probabilities of type | and type Il errors.

Table 5-5 Probabilities of Type | and Type Il
Errors

Action Hy is True H, is False

Reject Hp Type | error « Correct1 — B
AcceptHy, Correct1 — « Type Il error B
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THE p VALUE

The level of significance is determined before conducting the statistical test of significance,
or a priori. The p value is obtained from the statistical test of significance and indicates the
probability that the observed difference between the means could have been obtained by
chance alone, given random variation and a single test of the null hypothesis. If the obtained
p value is 0.03, the correct interpretation is that the probability of obtaining the test statis-
tic at least as extreme as the one calculated is 3%. That is, only 3% of all possible samples
will produce a test statistic as extreme as the calculated test statistic if the null hypothesis is
true. If the p value obtained from the statistical test is less than or equal to the preset alpha
level, the result is considered sufficiently rare so that the null hypothesis is rejected.

Exhibit 5-7 provides an example of a statistical test for the difference between two pop-
ulation means using Excel. In the example, the z test for the difference between two popu-
lation means was conducted to determine if the ALOS varied by sex for a particular
diagnosis-related group (DRG). In the example, the LOSs for males and females discharged
from DRG XXX were compared. The mean LOS for males is 4.26 days, and the mean LOS
for women is 4.95 days. Prior to conducting the z test, the null and alternative hypotheses
were stated and the alpha level was set:

Exhibit 5-7 z Test for the Difference Between Popu-
lation Means, Excel Output

Male Female
Mean 4.26 4.95
Known Variance 9.60 9.00
Observations 134.00 151.00
Hypothesized
Mean Difference 0.50
z —3.27
P(Z<=2z) one-tail 0.00
z Critical one-tail 1.64
P(z<=1z) two-tail 0.00
z Critical two-tail 1.96

The null hypothesis states that there is no difference between the ALOS for patients by
sex for DRG XXX; the alternative hypothesis states that there is a difference between the
ALQOS of the patients by sex for DRG XXX.

The Excel output provides the calculated z statistic and its corresponding p values, which
indicate whether the means of the two groups are significantly different from each other.
(Exhibit 5-8 provides an explanation of each row in the Excel output.) In Exhibit 5-7, the
calculated value of z is —3.27. In comparing the LOSs for the two groups, the procedure au-
tomatically transformed the LOSs for the two groups to z scores. Excel provides two other
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Exhibit 5-8 Explanation of Excel Output, z Test for the Difference Between Two Population Means

Mean: The arithmetic mean for each group, male and female

Known Variance: The population variance for each group must be provided in order to conduct the z test.
This will be discussed in Chapter 6.

Observations: The sample size for each group.

Hypothesized Mean Difference: When conducting the z test, the investigator must specify the difference
between the two means that he/she believes to be important. No difference was specified for this
example.

Z: The calculated value of z (—3.2733) as a result of conducting the statistical test.

p(Z<=z) one-tail: The p value. The probability that the critical value of z (1.64) is less than or equal to
the calculated value of z (—3.2733) for a one-tailed test.

z critical one-tail: The critical value of z (1.64) for a one-tailed test when a = 0.05. It should be inter-
preted as *£1.64 depending on the direction of the test.

p(Z<=z) two-tail: The p value. The probability that the critical value of z (1.96) is less than or equal to
the calculated value of z (—3.2733) for a two-tailed test.

z critical two-tail: The critical value of z (1.96) for a two-tailed test when « = 0.05.

z values: 1.96 and 1.64. These values are interpreted as =1.96 and =1.64. These are the crit-
ical values of z for both one- and two-tailed tests when alpha is set at 0.05. Recall that in the
standard normal distribution, 95% of the observations fall between +1.96 and —1.96 stan-
dard deviations of the mean. This means that 5% of the observations fall outside *+1.96
standard deviations. The remaining 5% of the observations are divided between the two tails
of the standard normal distribution—2.5% in the left tail and 2.5% in the right tail. The crit-
ical z value for a one-tailed test is =1.64. In a one-tailed test, we are interested in whether
one population mean is greater than or less than the other population mean. When alpha
equals 0.05, this is interpreted as 95% of observations falling above or below 1.64, depend-
ing on the direction of the test. The remaining 5% of the observations are located in either
the right tail or the left tail of the standard normal distribution. The calculated value of z,
—3.27, must equal or exceed the critical value of z if we are to reject the null hypothesis.
The Excel output provides two p values, one for a one-tailed test and one for a nondirec-
tional test, or two-tailed test. Our alternative hypothesis states that we are interested in
whether the mean LOSs for males and females for DRG XXX are significantly different.
We will use the p value for the two-tailed test. The p value is 0.0011, which is less than the
preset alpha level of 0.05. The interpretation of the p value is that the probability of obtain-
ing a z statistic as extreme as —3.27, given the corresponding sample size, is 0.11%, or less
than 1.0%. Since the p value is less than the previously stated alpha level, we reject the null
hypothesis and conclude that the mean LOSs for males and females are significantly differ-
ent from each other. We will discuss one- and two-tailed tests in more detail in Chapter 6.
Remember that the p value is not the level of significance; the level of significance, or al-
pha level, is set prior to conducting the statistical test. The p value is obtained as a result of
the statistical test. The p value is the probability of obtaining the resultant test statistic when
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all possible samples are drawn. The p value is a statistic that indicates how rare the particu-
lar sample is, whereas the level of significance is an independent criterion for evaluating the
sample result and is in no way dependent upon that particular result.

When our statistical analysis results in a nonsignificant difference, we should evaluate the
sample size. When the sample size is small, sampling error is likely to be large, and this of-
ten leads to a nonsignificant test result even when the observed difference is caused by a real
effect. There is no way to determine whether a nonsignificant difference is the result of the
small sample size or whether the null hypothesis is correct. It is for this reason that when
our statistical test is not significant, we should almost always regard it as inconclusive rather
than as an indication of no effect. On the other hand, very large samples are very likely to
result in statistical significance. With large samples, the alpha level is set at 0.01, which re-
quires very strong evidence to reject the null hypothesis. Even with an alpha as strict as 0.01,
one must judge the practical implications of the findings. Yes, the test may result in statisti-
cal significance, but does this difference have any practical application? When working with
data, one cannot rely solely on the results of statistical tests; the knowledge and judgment
of the researcher play a vital role in the interpretation of statistical procedures. We will dis-
cuss sample size in relation to type | and type Il errors in greater detail in a later chapter.

Calculating Sample Size

Procedures for calculating the sample size necessarily vary depending on the type of statis-
tical test to be used and the type of research study to be conducted. In general, the size of
the sample (n) is based on

1. the size of the population from which the sample is to be drawn.

2. the desired alpha level, which controls for type | error.

3. the choice on the bounds on the error of the estimate; i.e., how close the sample esti-
mate is to be to the true population value.

Sample size procedures may control for type | error or for both type | and type Il errors.
The procedures that we will discuss control only for type | error.

Sample sizes will be large when the underlying population is large, when variation within
the population is great, when the designated alpha level is strict (@ = 0.01), and when the
interval on the error of the sample estimate is narrow. Various procedures for calculating
sample size are presented in Exhibits 5-9 through 5-14.
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Exhibit 5-9 Sample Size Calculation to Estimate Exhibit 5-10 Sample Size Calculation to Estimate
Proportion or Rate When Population N is Known Proportion or Rate When Population N is Unknown

Problem 1: Calculation of size of a simple
random sample to estimate a proportion or rate
when the size of the total population is known.

Sample size = n/[n(B?) + 1]

Where B is the bound on the error of the esti-
mate.

Example: There are 600 students in the School
of Allied Medical Professions at XYZ Univer-
sity. We want to know what proportion of the
student body is male within +0.5% of the true
population proportion. If we want the popula-
tion proportion to be within /2 of 1.0% of the
true population proportion, the bound on the
error of the estimate is 1.0%(0.5% X 2).

Sample size = n/[n(B%) + 1]
= 600/[600(0.01%) + 1]
= 600/1.06
= 566.04, or 566 cases

Why do we need a sample size of 566 cases,
which would constitute 94% of the popula-
tion? Because we based our calculations on a
very narrow bound on the estimate: *=0.5%.
We are not willing to tolerate much error when
making inferences regarding the true popula-
tion proportion from the sample mean. If we
increase the bound on the estimate to +2.5%,
we have:

Sample size = n/[n(B?) + 1]
600/[600(0.05%) + 1]
=600/2.5

= 240 cases

Increasing the interval around our sample esti-
mate decreases the sample size required by
58%.

Problem 2: Calculation of size of a simple
random sample to estimate a proportion or rate
when the size of the total population is un-
known.

Sample size = [(1.962)(pq)]/B?

Where p is the estimated proportion or rate, q
is the 1 — estimated proportion or rate, and B
is the bound on the error of the estimate (1.96
varies depending on the desired confidence
level sought in estimating the proportion or
rate).

Example: We want to conduct a study of
members of the American Health Information
Management Association (AHIMA). We know
that in AHIMA, 10% of the population is
male. What is the size of the sample needed if
we want to be sure we have enough men in our
sample within =1.0% of the true population
proportion?

Sample size = [(1.962)(pq)]/B?
= {(1.96%)[(0.1)(0.9)]}/0.022
= [3.8416(0.09)]/0.0004
= 864.36, or 864 cases

Again, we ask why we need a such a large
sample size. We need it primarily because we
placed such a narrow bound on our estimate. If
we increase the bound on the estimate to
+2.5%, the resultant sample size reduces to
138.

Sample size = [(1.962)(pq)]/B?
= {(1.96%)[(0.1)(0.9)]}/0.05?
= [3.8416(0.09)]/0.0025
= 138.3, or 138 cases

Increasing the interval around our sample esti-
mate decreases the sample size required by
84%. By increasing the bound on the estimate,
we also risk not including enough men in our
study sample since they comprise only 10% of
the population. WWe must sometimes oversam-
ple to include enough cases when members of
a stratum are underrepresented in a population.
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Exhibit 5-11 Sample Size Calculation to Estimate Exhibit 5-12 Sample Size Calculation to Estimate
Mean When Population N is Known Mean When Population N is Unknown

Problem 3: Calculation of size of a simple
random sample to estimate the mean when the
size of the total population is known.

n(SD)?
n — 1[B?%/1.96%] + (SD)?

Sample size =

where SD equals the standard deviation, which
can be estimated by dividing the range by 4
(R/4).

Example: We want to select a sample to study
the mean number of days in the surgical inten-
sive care unit (SICU) for patients have coro-
nary artery bypass graft (CABG) surgery. Last
year, 400 patients were discharged; for these
patients, the number of SICU days ranged
from 2 to 9. We want to estimate the mean
number of days with =0.25 days of the true
population mean.

SD=R/4=9-2=7/4=175
n(SD)?
n — 1[B%1.967] + (SD)?
B 400(1.75)?
"~ 399[(0.5%)/1.96%] +1.75°

= 1,225/{[399(0.065)] + 3.0625}
= 1,225/28.9975
= 42.25, or 42 cases

Sample size

Problem 4: Calculation of size of a simple
random sample to estimate the mean when the
size of the total population is unknown.

Sample size = [1.96%(SD)?]/B?

Where SD is the standard deviation, which can
be estimated by dividing the range by 4 (R/4).
Example: We want to select a sample to study
the mean number of surgical intensive care
unit (SICU) days for patients having coronary
artery bypass graft (CABG) surgery. The
CABG benchmarking literature indicates that
the number of SICU days ranges from 2 days
to 11 days. We want to estimate the mean
number of days within = 0.25 days of the true
population mean.

SD=R/4=11—-2=9/4=225

Sample size = [1.96%(SD)?]/B?
= [1.962(2.25)?]/0.5°
=19.4481/.25
= T77.79, or 78 cases
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Exhibit 5-13 Stratified Sample Size Calculation to Estimate Mean When Population N is Known and n in Each
Stratum is Known

Problem 5: Calculation of size of stratified random sample to estimate the mean when the size of the to-
tal population is known and the n in each stratum is known.

Sample size = g/{[(N)(B?)/1.96%] + (q/n)}

Where q = 2[(n)(SD)]? for each stratum, n is the population size of each stratum, N is the total popula-
tion size, SD is the standard deviation, and B is the bound on the error of estimate.

Example: We want to select a stratified random sample to study the mean drug charges for congestive
heart failure (CHF) patients treated during the previous year. The population consists of 370 patients strat-
ified by three physicians. We want the mean charge estimate to be within = $25 of the true population
mean. Information related to physicians A, B, and C appears below:

Phys A Phys B Phys C
No. of patients 120 160 90
p of patients 0.324 0.433 0.243
Range of drug charges $1,000 $900 $852
SD (R/4) $250 $225 $213

First calculate q: = S[(n)(SD)]?
= [(120)(2500]2 = 900,000,000
= [(160)(225)]? = 1,296,000,000
= [(90)(213)]> = 367,488,900
2,563,488,900
Sample size = g/{[(N)(B?)/1.96%] + (q/n)}

= 2,563,488,900/{[(370)(1.96%)] + (2,563,488,900/370)}
= 370 total cases (rounded)

For each stratum:

Physician A = 370 X 0.324 = 120 cases
Physician B = 370 X 0.433 = 160 cases
Physician C = 370 X 0.243 = 90 cases
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Exhibit 5-14 Sample Size Calculation to Estimate
Difference Between Two Means

Problem 6: Calculation of size of a simple
random sample to estimate the difference be-
tween two means at the 95% confidence level.

Sample size = {1.962[(SD,)? + (SD,)?]}/B?

Where SD; = standard deviation of group 1,
SD, = standard deviation of group 2, and
B? = size of the difference to be detected.

Example: We want to select a sample to de-
termine if the difference between the mean av-
erage length of stay (ALOS) between two
physicians is at least = 0.25 days. The stan-
dard deviation for ALOS for the patients of
physician A is 1.98; for physician B, it is 1.52.

Sample size = {1.962[(SD,)? + (SD,)?]}/B?
={1.967[(1.982 + 1.52%)]}/0.52
=23.94/.25
= 95.74, or 96 cases per group

USING COMPUTER SOFTWARE TO SOLVE PROBLEMS

Many computer programs are available that can assist you in solving statistical problems.
The advantage of using electronic spreadsheets or a dedicated statistical package is that the
data can be entered directly, and databases can be designed to help evaluate these problems
on a timelier basis. If you recall from Chapter 3, the more timely the data, the more valu-
able they are in the decision-making process. The health information manager should be-
come proficient not only in data collection, but also in the analysis of data so that the data
are useful to health care providers, planners, and researchers. Examples have been limited
to the use of SPSS, but electronic spreadsheets such as Excel may also be used.

Selection of statistical computer software is a matter of choice. An example of using Ex-
cel for descriptive statistics is presented in Exhibit 5-15. The output displayed is provided
automatically be Excel when one is using the “descriptive statistics” option. Dedicated sta-
tistical packages, such as SPSS, are often easier to use in that less manipulation of the data
is required. Also, dedicated statistical packages can offer the user more choices in the type
of statistical tests that are available, and most include both parametric and nonparametric
procedures. Excel does not include options for nonparametric procedures.
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Exhibit 5-15 Excel Output for Descriptive Statis-

tics on Age
Age
Mean 77.733
Standard Error 1.086
Median 78.5
Mode 74
Standard Deviation 5.948
Sample Variance 35.375
Kurtosis —0.436
Skewness —0.100
Range 24
Minimum 66
Maximum 90
Sum 2332
Count 30
Confidence Level (95.0%) 2.2209

CONCLUSION

The normal and standard normal distributions are theoretical distributions used for testing
statistical problems in health care, since many naturally occurring phenomena follow the
normal distribution. The normal distribution is actually a family of distributions in which
the population mean can take on any value. The normal distribution is a symmetrical, bell-
shaped distribution where 50% of the observations fall above the mean and 50% of the ob-
servations fall below the mean. In the normal distribution, the mean, median, and mode are
equal.

To make comparisons between distributions, the normal distribution may be standardized.
The standard normal distribution has many of the same properties as the normal distribu-
tion, except that in the standard normal distribution, the mean is equal to 0 and the standard
deviation is 1. There is only one standard normal distribution. In the standard normal dis-
tribution, 68% of the observations fall between +1.0 and —1.0 standard deviations of the
mean, and 95% of the observations fall between +1.96 and —1.96 standard deviations of
the mean.

The standard normal distribution is important in statistical inference. The standard nor-
mal distribution can be used to make comparisons between populations. In statistical test-
ing, we are interested in whether one population is the same as or differs from another
population on a variable of interest.

When making comparisons between populations, we must first draw a sample from the
population. Probability sampling is the preferred sampling technique. Types of probability
sampling include simple random sampling, stratified random sampling, systematic sam-
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pling, and cluster sampling. It is important to take care when drawing samples so that we
have some level of confidence when making inferences from the sample to the underlying
population. In general, the larger the sample size, the more confidence we have in our re-
sults.

With statistical inference, we are interested in making generalizations about our popula-
tion parameters from sample statistics. For example, if we are interested in comparing two
population means for significant differences, we must set up a hypothesis. For statistical
testing we set up two hypotheses—the null and alternative hypotheses. The null hypothesis
states that there is no difference between the population parameters of interest; the alterna-
tive hypothesis states that there is a statistically significant difference in the population pa-
rameters of interest. After formulating our hypotheses, we must set an alpha level for
rejection of the null hypothesis. For large samples, alpha is usually set at 0.01 because it is
easy to achieve statistical significance with large samples. Conversely, for small samples,
alpha is usually set at 0.05 because it is more difficult to achieve statistical significance with
smaller samples. The alpha level also indicates the probability of making a type | error. In
a type | error, we reject the null hypothesis when it is true. A type 1l error is made when we
fail to reject a null hypothesis that is false.
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Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
2. Compare the normal distribution with the standard normal distribution.
3. What is the difference between the standard deviation and the standard normal deviate?

4. You have been analyzing discharges by sex from DRG 462, Rehabilitation, for Critical
Care Hospital. Specifically, you are interested in determining if there is a difference in
average age by sex. Review the data in Table 5-A-1, and answer the questions that
follow.

Table 5-A-1 Mean Age of Patients by Sex, DRG 462,
Rehabilitation, Critical Care Hospital, 2004

Female Male Total
N 80 88 168
Mean 55.467 53.947 54.671
Standard Deviation 17.5344 19.1981 18.3856
Standard Error 1.9604 2.0465 1.4185

Lower bound 95% CI  51.565 49.879 51.871
Upper bound 95% CI  59.370 58.015 57.472
Minimum age 19.4 17.5 17.5
Maximum age 89.1 97.6 97.6

State the null and alternative hypotheses; state the a priori alpha level.

What is the average age for the entire group? For men? For women?

Why is the standard error larger for the male group than for the female group?

Why is the standard error for the total group smaller than either of the standard errors
for the male or female groups?

e. What is the 95% confidence interval for men? For women? For the entire group?
What is your interpretation of the 95% confidence interval?

o0 o
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152



Multiple Choice 153

. You have been analyzing hospital discharges from DRG 15, Transient Ischemic Attack
and Precerebral Occlusions. The average length of stay (ALOS) for patients discharged
from DRG 15 is 2.2 days. The national length of stay for DRG 15 is 4.1 days. You are in-
terested in determining whether the hospital's length of stay for DRG 15 is significantly
different from the national ALOS.

a. State the null and alternative hypotheses.

b. Set the alpha level.

. You are interested in studying patient average length of stay (ALOS) for three physicians.
You want to determine if there is a significant difference between the ALOSs of the three
physicians.

a. State the null and alternative hypotheses.

b. Set the alpha level.

. Explain the differences between the alpha level and the p value.

. What are type | and type Il errors? What factors contribute to making either a type | or
type Il error?

. The mean length of stay for patients discharged from DRG 005, Extracranial Vascular
Procedures, is 3.33. The standard deviation for the group is 3.18, and the number of pa-
tients discharged is 21. Calculate the 95% confidence interval for the mean length of
stay.

MULTIPLE CHOICE

1. In a normal distribution, 68% of the observations fall within:
a. =1 o of the mean

b. =2 o of the mean

c. =3 o of the mean

d. *=1% o of the mean

2. In a normal distribution, 32% of the scores fall outside:
a. =1 o of the mean

b. *=2 ¢ of the mean

c. =3 o of the mean

d. *=1% o of the mean

3. The normal distribution is:

a. continuous

b. a family of distributions

¢. symmetrical about the mean
d. all of the above
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4. Which of the following is not a characteristic of the normal curve?
a. Itis unimodal.
b. It is a discrete distribution.
c. Itis asymptotic to the x-axis.
d. The mean may take on any value.

5. The lengths of stay for DRG 123 were standardized so that comparison could be made
across hospitals. What percentage of the lengths of stay would have a z value greater
than or equal to 1.00?

a. 32%
b. 16%
c. 8%
d. 4%

6. In a standard normal distribution, what percentage of the lengths of stay for DRG 123
would fall above z = —1.96?
a. 99%
b. 97.5%
c. 95%
d. 68%

7. If a distribution has a long tail to the right, it is:
a. bimodal
b. abnormal
C. positively skewed
d. negatively skewed

8. In a standard normal distribution, the mean:
a. 15 0.00
b. is —1.00
c. is +1.00
d. may take on any value

9. A normal distribution has a mean of 20 and a standard deviation of 5. Ninety-five per-
cent of the scores fall between:
a. 15and 25
b. 10 and 30
c. 5and 35
d. not enough information provided

10. The standard deviation of a distribution is 24; the sample size is 9. The standard error
of the mean is:
a. 3
b. 8
c. 75
d. 225
e. not enough information provided



11.

12.

13.

14.

15.

16.

17.

Multiple Choice

A condition that is fundamental to statistical inference is:
random sampling

that the population is normally distributed

that the mean of the population is known

(@) and (b)

all of the above

T o0 o

The null hypothesis is a statement that is:

a. probably true

b. considered to be false until proven true

c. evaluated statistically as either true or false
d. all of the above

When « = 0.05, the null hypothesis will be:
a. rejected 5% of the time

b. rejected 5% of the time when it is true

c. accepted 5% of the time

d. accepted 5% of the time when it is false

A type I error occurs when:

a. we reject the null hypothesis when it is true
b. we reject the null hypothesis when it is false
C. we accept the null hypothesis when it is true
d. we accept the null hypothesis when it is false

A type Il error occurs when we:

a. use a two-tailed test when a one-tailed test is more appropriate
b. use a one-tailed test when a two-tailed test is more appropriate
c. reject the null hypothesis when it is true

d. accept the null hypothesis when it is false

If we change the alpha level for a statistical test from 0.05 to 0.01, we are:
a. increasing the risk of making a type I error

b. decreasing the risk of making a type | error

c. decreasing the risk of making a type Il error

d. increasing the probability of finding statistical significance

In general, large sample sizes:

a. reduce the risk of type I error

b. reduce the risk of type Il error

c. make it easier to achieve statistical significance
d. (a) and (c)

e. all of the above
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18.

19.

20.

21.

22.

The p value is the:

a. power of a statistical test

b. probability that the null hypothesis is true

c. probability of making a type Il error

d. probability of getting a result as extreme as the one observed if the null hypothesis
is true

We have drawn a simple random sample of 100 patients who were discharged from Crit-
ical Care Hospital in January. Of all the patients discharged during January, 55% were
women and 45% were men. To match the population, our sample should contain:

a. 45 men and 55 women

b. 50 men and 50 women

c. 55 men and 45 women

d. The ratio of men to women in the sample size is not important.

You are assisting a physician who is conducting a study on the number of cancer cases
at Critical Care Hospital. You jointly decide to take a 5% random sample of the esti-
mated 20,000 charts. This is an example of:

a. cluster sampling

b. simple random sampling

c. stratified random sampling

d. two-stage random sampling

The physician now decides to draw his 5% sample of cancer cases by selecting every
20th chart by medical record number. This is an example of:

a. random cluster sampling

b. two-stage random sampling

c. systematic sampling

d. stratified random sampling

You decide to study coding quality by randomly selecting hospitals in your state. From
each of the hospitals selected, you review coded charts of randomly selected coders.
This is an example of:

a. cluster sampling

b. simple random sampling

c. stratified random sampling

d. two-stage random sampling

PROBLEMS

1.

Review the data on length of stay that appear in Table 5-A-2 to answer the questions
below.
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. using a microcomputer statistical package, calculate the average length of stay for the
entire group, for men, and for women.

. You are interested in determining if there is a difference in the average length of stay
by sex. State the null and alternative hypotheses and state the a priori alpha level.

. Calculate the standard error of the mean length of stay for the entire group, for men,
and for women.

. Calculate the 95% confidence interval for length of stay for the entire group, for men,
and for women.

Table 5-A-2 Critical Care Hospital, Length of
Stay of Patients by Sex, DRG 127, Heart Fail-
ure and Shock

LOS Days Female Male Total

1 1 5 6
2 1 5 6
3 3 13 16
4 4 1 5
5 0 5 5
6 3 1 4
7 0 1 1
8 2 2 4
10 1 3 4
11 1 2 3
13 1 0 1
14 0 1 1
15 1 0 1
16 0 1 1
17 0 1 1
27 1 0 1
36 1 0 1
Total 20 41 61






CHAPTER 6

Hypothesis Testing of the
Difference Between Two
Population Means

KEY TERMS  Hypothesis testing

One-tailed test

Two-tailed test

Noncritical region

Region of rejection

Critical region

Z test
z test for comparing two independent population means
z test for comparing two population proportions

Effect

t test
one-sample t test
t test for comparison of two independent sample means
paired t test

Degrees of freedom (df)

LEARNING At the conclusion of this chapter, you should be able to:

OBJECTIVES 1. Define key terms.

2. Calculate one- and two-tailed tests of significance for one and two

independent samples using z.

Use z for comparing two population proportions.

Compare and contrast the normal distribution and t distribution.

5. Calculate one- and two-tailed tests of significance for one and two
independent samples using t.

6. Conduct a paired-sample t test.

7. Use statistical software to calculate the various t tests.

~w

159



160 CHAPTER 6 HypPOTHESIS TESTING OF THE DIFFERENCE BETWEEN Two PopPULATION MEANS

In our discussion of hypothesis testing of the difference between population means, we
will be dealing with examples where population parameters are both known and unknown.
If population parameters are known and we have sufficiently large samples (N = 30), the
standard normal distribution is used as the basis for statistical decision making in the form
of a z test. If we are comparing means when population parameters are unknown, and if our
samples are smaller, Student’s t test is used as the basis for statistical decision making. Our
discussion will first focus on the use of the z test and the standard normal distribution, and
then consider the t test and the t distribution for comparing sample means to population
means, comparing the means of two populations, and comparing pre- and posttest scores of
matched pairs.

THE STANDARD NORMAL DISTRIBUTION AND THE z TEST FOR
COMPARING POPULATION MEANS

Before we conduct a statistical test such as the z test, we must develop a hypothesis for the
test. We select a statistical test based on our research questions, which are developed into
statistical hypotheses. A statistical hypothesis may involve comparing a sample mean to a
population mean or comparing two or more sample means drawn from two populations. The
hypothesis may be either one-tailed (directional) or two-tailed (nondirectional). In a one-
tailed test, we are seeking to determine if our sample mean, X, is significantly greater or
less than the population parameter . If we are interested in determining whether our sam-
ple X is significantly greater than the population parameter ., we look for a critical z value
in the positive tail of the distribution. Conversely, if we are interested in determining
whether our sample X is significantly less than the population parameter w, we look for a
critical z value in the negative tail of the distribution. In a one-tailed test with an alpha of
0.05, we look for statistical significance in either the upper or lower tail of the distribution.

In a nondirectional or two-tailed test, we are interested only in determining whether the
sample mean, X, and the population parameter, w, are significantly different from each
other; the direction of the inequality is not an issue. In this case, both tails of the z distribu-
tion are used in the statistical decision making. A two-tailed test divides alpha in half, plac-
ing 0.025 in each tail. That is, when alpha is set at 0.05, we look for statistical significance
in either the positive or negative tails of the standard normal distribution.

The null and alternative hypotheses may take the following forms:

Hoap1 = 5.5 0r Hoal 1 = p2

Hap, # 5.5 0r Ha! 1 # o (two-tailed tests)
Hap: < 5.5 0r Ha! 1 < o (One-tailed tests)
Hap: > 5.5 0r Ha! 1 > o (One-tailed tests)

From our discussion in Chapter 5, we know from the central limit theorem that we can
expect that 95% of the sampling means will fall between +1.96 and —1.96 standard devia-
tions of the true mean, and that 99% of the sampling means will fall between +2.58 and
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—2.58 standard deviations of the true mean. For a two-tailed test, these standard deviations
correspond to the significance levels of 0.05 and 0.01, respectively. In a one-tailed test, z =
+1.64 when oo = 0.05, and z = *=2.33 when o = 0.01. A one-tailed test is considered more
“robust” than a two-tailed test because statistical significance is easier to achieve. In a one-
tailed test when « = 0.05, =1.65 is required to achieve statistical significance; in a two-
tailed test, =1.96 is required for statistical significance. The space between the critical
values of z is called the noncritical region; the space outside or equal to the critical values
of z is called the region of rejection. The critical values for the standard normal distribu-
tion are displayed in Table 6-1.

Table 6-1 Critical Values for Standard Normal

Distribution
Alpha Critical Value z
Two-tailed test 0.05 +1.95
0.01 + 2.58
One-tailed test 0.05 +1.65
0.01 + 2.33

A one-tailed test is considered more “robust” than a two-tailed test because it is easier to
achieve statistical significance. When conducting a statistical test, we “calculate” the value
of z and compare it to the critical value of z. On a one-tailed test when o = 0.05, a z of
+1.65 is required to achieve statistical significance, so our calculated value of z must fall
outside £1.65 in order to be statistically significant. In a two-tailed test, a z of =1.96 is re-
quired for statistical significance, so our calculated value of z must fall outside +1.96 in or-
der to be statistically significant. In a two-tailed test, the space between +1.96 when o =
0.05 is called the noncritical region or the area where we do not reject the null hypothesis.
Thus, if the calculated value of z falls between £1.96, we fail to reject the null hypothesis.
On the other hand, the space outside or beyond * 1.96 when « = 0.05 is called the critical
region. If the calculated value of z is greater than or equal to +1.96 or less than or equal to
—1.96, we reject the null hypothesis.

When we are conducting either a one-tailed or a two-tailed z test, the population parame-
ters w and o are known. In our first example, we will conduct a two-tailed test in which we
are interested in whether the hospital’s average length of stay (ALOS) for patients dis-
charged from hypothetical DRG XXX is different from the national ALOS. The 2003 na-
tional mean length of stay (LOS) (w) for DRG XXX is 6.3 days, and the hypothetical
standard deviation is 2.44 (o). (We are using a hypothetical standard deviation because the
actual population parameter is not available.) At Critical Care Hospital in 2003, 104 patients
were discharged from DRG XXX with an ALOS of 5.49 days and a standard deviation equal
to 3.44. In determining whether the observed difference in the ALOSs is statistically signif-
icant, we need to first state the null and alternative hypotheses and alpha level:
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Ho: 1 = w2
Hal 1 # po2
o = 0.05

The null hypothesis states that the hospital’s ALOS is equal to the national ALOS for
DRG XXX. The alternative hypothesis states that the hospital ALOS for DRG XXX is sig-
nificantly different from the national ALOS. Since the alternative hypothesis is one of in-
equality, we are conducting a two-tailed test. The calculated value of z must fall outside or
be equal to the critical value of z, =1.96. The z value is calculated as follows:

X

~ o/Vn
549 - 6.30
2.44/\V/104
. —0s81
 (2.44/10.19)
= —3.39

z

The results would be reported as:

Zeaie = —3.39
ZCI‘it = _196

Since our calculated value is negative, we refer to the negative tail of the distribution. The
calculated value of z, —3.39, falls outside the critical value of z, —1.96, when o = 0.05. We
therefore reject the null and conclude that the ALOS at Critical Care Hospital is signifi-
cantly different from the national ALOS for DRG XXX.

In our second example, we will conduct a one-tailed test. The quality improvement team
at Critical Care Hospital is interested in determining if the administration of a new antibi-
otic has had any effect in reducing the ALOS for patients discharged from DRG XXX. (An
effect is a change in one variable—in this case, the ALOS—that may be associated with an-
other variable—in this case, the antibiotic.) In 2003, the ALOS for the 104 patients dis-
charged from DRG XXX at Critical Care Hospital was 5.49 days, and the standard deviation
was 3.44. Specifically, we want to know if the antibiotic resulted in significant reduction of
the ALOS.

We will first construct our null and alternative hypotheses. In the null hypothesis, we are
assuming that the antibiotic will have no effect. If we reject the null hypothesis on the basis
of our statistical test, we are saying that the probability of getting such a mean value by ran-
dom chance is too small for us to believe that the null hypothesis is true. If we fail to reject
the null hypothesis, we are stating that the probability associated with the observed mean is
large, that such samples are common, and that there is not enough evidence that the antibi-
otic was effective in reducing the ALOS.

The null and alternative hypotheses are
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HO: W1 = 5.49
Ha: < 5.49
o = 0.05

The null hypothesis states that the hospital ALOS is equal to 5.49, the hospital’s ALOS
for DRG XXX in 2003. The alternative hypothesis states that the hospital ALOS is signifi-
cantly less than the 5.49 days.

In this one-tailed test, we are interested in determining if the ALOS for DRG XXX is sig-
nificantly less than the ALOS prior to administration of the new antibiotic. So we will look
for statistical significance in the negative end of the tail. For a one-tailed test in which al-
pha is set at 0.05, the critical value of z is —1.64, so the calculated value of z must be less
than or equal to —1.64 in order for the results to be statistically significant.

Now that we have stated the null and alternative hypotheses, we need to determine the
sample size necessary to provide us with results in which we can be confident. Using the
formula in the previous chapter in Exhibit 5-11, we will calculate the sample size, with a
bound on the estimate equal to 0.25. The bound on the estimate indicates that we want to be
within +0.25 of our true population mean. The sample size is calculated as follows:

N(SD?)
[N — 1(B%1.96%)] + SD?
104(3.44%)
[103(0.5%/1.96%)] + 3.447

66.39
= 66

The sample size for our study is 66; the size of the standard deviation indicates that there
is quite a bit of variation in the LOS for the 2003 discharges. Thus, for the amount of pre-
cision required in the study, a comparatively large sample is required. The descriptive sta-
tistics relating to our sample appear in Exhibit 6-1. The sample mean for the 66 patients
who make up the sample who were treated after implementation of the antibiotic is 4.71.

Exhibit 6-1 Descriptive Statistics for Sample from

DRG 089
Valid N
LOS  (listwise)
N Statistic 66 66

Minimum Statistic 1.00
Maximum Statistic 11.00
Mean Statistic 47121
Std. Deviation ~ Statistic 2.6181
Skewness Statistic .601
Std. Error .295
Kurtosis Statistic —.608
Std. Error .582
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7= X~
a/\V/n
4721 - 5.49
 2.441\V66
_ -0.78
 (2.44/8.12)
— —259

Our calculated value of z is —2.59 and falls in the region of rejection, since the critical
value of z for a one-tailed test is —1.64 when alpha equals 0.05. Because the calculated
value is less than or equal to the critical value of z, we reject the null and conclude that the
new antibiotic may have had an effect on reducing LOS for patients discharged from DRG
XXX in 2004. Note that this example is used for illustrative purposes only. Other factors
may be at work that account for the reduction in the ALOS.

We can find the critical value of z by referring to a statistical table. Appendix B contains
a table for the z scores in the standard normal distribution (Table B-1). The table contains
three columns:

V4 Cump Tail p
0.00 0.5000 0.5000
0.01 0.5040 0.4960
3.90 1.000 0.0000

The first column contains the values of z from 0.00 to 3.90; these should be read as both
positive and negative, since the normal distribution is symmetrical. As you recall, the z
score, 0.00, is the mean or center of the distribution. The second column is the cumulative
probability of z from the lower end to the distribution to the location of z in the standard
normal distribution. The third column is the tail probability, or the area beyond the location
of z in the remaining portion of the distribution. For each value of z, the sum of these two
probabilities is equal to 1.00.To locate the exact probability of a calculated value of z, such
as —3.39, locate 3.39 in the z column. The third column indicates that the exact p value for
a one-tailed test is 0.0003. This is the portion of the standard normal distribution that is in
one tail of the distribution beyond the z value +—3.39. If we are conducting a two-tailed
test, we must double the p value to 0.0006.

THE z TEST FOR COMPARING TWO POPULATION PROPORTIONS

Often in quality improvement activities or various types of medical research, we are inter-
ested in comparing population proportions rather than population means. For example, we
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may be interested in comparing the proportion of patients in medical and surgical intensive
care who acquire nosocomial infections, or comparing the proportion of patients who sur-
vive five years after experiencing two different surgical procedures. We can use a variation
of z for comparing two population means or comparing two population proportions. The z
test for comparing two population proportions may be either directional or nondirectional.
Just as when we compare two population means using z, we assume that the two samples are
selected independently and randomly from their respective populations and that the samples
are normally distributed.
The null and alternative hypotheses may take the following forms:

Ho: p1 = P2
Ha: p1 # p2 (two-tailed tests)
Ha: p1 < p2 Or p; > p, (one-tailed tests)

The formula for calculating z for comparing two proportions is

_ (P2 — p2) — [1/2(1/ng + 1/ny)]
- Vpg[(Lng) + (1n,)]

where p is the proportion of p; and p, when considered together as one sample and q is
(1-p.

Consider the hypothetical example where we are comparing five-year survival rates fol-
lowing surgery for breast cancer. In group 1, 100 patients were followed after undergoing
lumpectomy. In group 2, 100 patients were followed after undergoing mastectomy of the af-
fected breast. In group 1, 80% of the patients were still alive after five years; in group 2,
85% were still alive after five years. The research question is whether there is a significant
difference in the five-year survival rates between the two groups. The null and alternative
hypotheses for a nondirectional test are

Ho: p1 = p2
Hal p1 # P2
o = 0.05

The null hypothesis states that the proportion of patients who survived in group 1 is equal
to the proportion who survived in group 2. The alternative hypothesis states that the pro-
portions of patients who survived in each group are not equal. The test we will conduct is a
nondirectional test for the difference between two population proportions. In order for the
test to be statistically significant, the calculated value of z must fall outside or equal the crit-
ical value of z, =1.96.

For a nondirectional test for an alpha of 0.05, the critical value of z is =1.96, and z is cal-
culated as
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(P1 — p2) — [1/2(1/ny + 1/ny)]
Vpal(tiny) + /ny)]

(0.8 — 0.85)[1/2(1/100 + 1.100)]

V/(0.825)(0.175)(1/100 + 1/100)

(—0.05) — [1/2(0.01 + 0.01)]

\/0.144(0.01 + 0.01)
—0.06/0.054
~1.12

Since our calculated value of z, —1.12, does not fall in the region of rejection, we fail to
reject the null and conclude that it appears that the five-year survival rates following these
two different surgical procedures are not significantly different. In other words, the type of
surgical procedure had no effect on the five-year survival rate for breast cancer.

In the above example, the z calculations were performed with the assistance of a hand-
held calculator. Neither SPSS, version 12.0, nor Excel provides a procedure for conducting
a z test for the difference between two population proportions.

THE t TEST

Thus far in this text, we have discussed only the normal and standard normal distributions.
There are other distributions from which statistical inferences can be made, one of which
is the t distribution, sometimes referred to as Student’s t. Student’s t is named for William
Gosset, who published under the pseudonym of Student. He was the first to describe this
family of distributions. We conduct a t test when the population parameter ¢ is unknown.
The o is estimated from the sample statistic s. Before conducting the actual t test, we will
compare the standard normal distribution with the t distribution. The t distribution is used
for statistical testing when population parameters are unknown and/or when the sample
size is small. The definition of small varies; some researchers state that a sample size of
less than 500 is small, while others consider a sample size of less than 90 small. Others
have used the various forms of the t test with sample sizes of less than 30. With very large
samples (e.g., N = 1,000), the t distribution and the normal distribution are approximately
the same. In fact, the standard normal curve is a special case of the t distribution when
df = oo,

Both the standard normal and t distributions are symmetrical about a mean of zero. Like
the normal distribution, the t distribution is actually a family of distributions based on sam-
ple size. This additional parameter is referred to as degrees of freedom (df) and is calcu-
lated by subtracting 1 from the sample size (df = N — 1). Exhibit 6-2 provides an
explanation of degrees of freedom. The normal distribution is bell-shaped; the shape of the
t distribution is related to the number of degrees of freedom. A distribution with a small
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number of degrees of freedom is flatter; this results in a greater area in the tails of the dis-
tribution. Because the t distribution is so spread out, it is more difficult to achieve statisti-
cal significance with a small sample size.

Exhibit 6-2 Degrees of Freedom

The term degrees of freedom refers to the number of values that are free to vary af-
ter certain restrictions have been placed on the data. For example, in any set of in-
terval level data, we can sum the data to get a total. Assume that for a given
frequency distribution, the sum is 100 and there are 10 cases (N = 10). If we arbi-
trarily assign a value of 10 to the first case, 5 to the second case, 15 to the third, 8
to the fourth, 2 to the fifth, 18 to the sixth, 23 to the seventh, 4 to the eighth, and 6
to the ninth, the cumulated sum will be:

10+5+15+8+2+18+23+4+6=091

The first nine values sum to 91. For all 10 cases to sum to 100, the 10th case must
be equal to 9. Nine scores were arbitrarily set before the 10th was determined. Nine
scores were free to vary; thus, we have nine degrees of freedom. Degrees of free-
dom are the number of elements in a set that can be arbitrarily defined before the
rest of the elements in the set are determined.

In the t distribution when o = 0.05, the critical value required to achieve statistical sig-
nificance varies with the size of the sample. With the t distribution for a sample size of 10
(df = 9) and for a two-tailed test, a value outside or equal to =2.262 must be obtained to
achieve statistical significance, as compared to = 1.96 in the standard normal distribution.
In the t distribution with nine degrees of freedom, 95% of the observations fall between
—2.262 and +2.262 standard deviations of the mean. If the size of the sample is increased
from 10 to 20 (df = 19), the critical value required to achieve statistical significance de-
creases to +=2.093. Thus, the critical value needed to achieve statistical significance de-
creases as the sample size increases. As the sample size increases, the t distribution becomes
less broad and flat and approaches the bell shape of the normal curve. With a sample size
of 500, the critical value for the t distribution, when alpha is set at 0.05, is +1.965, similar
to the critical value of =1.96, when alpha is set at 0.05, for the normal distribution. To test
a hypothesis using the t distribution, we compare the calculated value of t to the critical
value of that is contained in the t table (Appendix B, Table B-2). Remember that the t dis-
tribution is actually a family of distributions where the tabled value of t is dependent upon
the number of degrees of freedom in the sample, where df = N — 1.

The assumptions for the t test are that the samples are drawn randomly and independently
from their respective populations and that they are normally distributed. In addition, it is as-
sumed that the population variances of the two groups are approximately equal.
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Two-tailed t Test

In a nondirectional t test, our question is just whether our sample mean is significantly differ-
ent from the population mean, regardless of direction. In this case, both tails of the t distribu-
tion are used in the statistical decision making. A two-tailed t test divides alpha in half, placing
half in each tail. That is, when alpha is set at 0.05, 2.5% of the area under both the upper and
lower tails of the curve is considered when deciding whether to accept the null hypothesis.

Given this information about the t test and the t distribution, let us work through the same
LOS problem that we used with the one-tailed z test. To restate our question of interest, we
are interested in determining whether the hospital’s ALOS for DRG XXX is significantly
different from the national ALOS for DRG XXX. The national ALOS is 6.3 days; our hos-
pital mean LOS is 5.49, and the standard deviation is 3.44. There were 104 discharges from
DRG XXX. The first step in the process is to state our null and alternate hypotheses and to
set the alpha level at which we will reject our null hypothesis:

Ho: 1 = 2
Hal g # po
a = 0.05

As with the nondirectional z test, the null hypothesis states that the hospital ALOS for
DRG XXX is equal to the national ALOS for DRG XXX. The alternative hypothesis states
that the ALOS for the hospital is significantly different from the national ALOS for DRG
XXX. Since we are interested in determining only whether our hospital mean is different
from the national mean, the t test is nondirectional, or a two-tailed test. Next, we determine
the critical region for rejection of the null hypothesis. For a sample size of 104 (df = 103),
the tabled t or critical t(t o5) value is approximately =1.98; since H is nondirectional, the
critical region consists of all values of t = 1.984 or < 1.984.

To locate the critical value of t, we refer to the tabled critical values of the t distribution in
Appendix B, Table B-2. The first column lists the degrees of freedom, and the remaining
columns identify the critical values of t for a priori alpha levels for both one- and two-tailed
tests. Since the table does not list all possible degrees of freedom, we select the row for df =
100 for our problem. For a two-tailed test with alpha set at 0.05, the critical value of t is 1.984.
Therefore, our region of rejection for the calculated value of t must equal or fall outside +1.984.

Using the formula for a one-sample t test, we can now calculate t:

(- Xk
s/\/ﬁ
. 5.49 — 6.30
3.44/'\/ 104
o081
©3.44/10.19

= —2.399
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The results would be reported as

toae = —2.399
tcrit.05 = —1.984

Since our ¢, falls in the region of rejection, we reject the null and conclude that our hos-
pital LOS is significantly different from the national ALOS for DRG XXX.

Note that the formula for t takes the same general form as that for z. The only difference
is that in z, the population parameter o is used in the calculation, whereas in t, the popula-
tion o is estimated from the sample statistic s. To calculate the Clgs, we use the same pro-
cedures as presented in Chapter 5, except that we use the critical value of tgs, which for
103 df is 1.98.

Clos = X + t.(s/'V/N)
— 5.49 + 1.98(3.44/\/104)
— 5.49 + 1.98(3.44/10.19)
— 5.49 + 1.98(0.34)
— 5.49 + 0.668
[4.82,6.16]

Thus, we are 95% confident that the true population mean lies between 4.82 and 6.16. We
can use SPSS to calculate the one-sample t test. When requesting the one-sample t test, the
population parameter (i.e., 6.3) to which the sample mean is being compared must be spec-
ified. The output for the one-sample t test appears in Exhibit 6—3 and an explanation of the
SPSS output appears in Exhibit 6-4.

Exhibit 6-3 SPSS Output for One-Sample t Test

One-Sample Statistics One-Sample Test
LOS LOS
N 104 Test Value = 6.3 t —2.399
Mean 5.4904 df 103
Std. Deviation 3.44159 Sig. (2-tailed) .018
Std. Error Mean 33748 Mean Difference —.80962
95% Confidence Interval Lower —1.4789
of the Difference Upper —.1403
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Exhibit 6-4 Output for One-Sample t Test

Test Value Population Parameter to Which the Sample is Compared
t The calculated value of t.
df Degrees of freedom; for the one-sample t test the degrees of freedom are equal to
(n-1)
Sig. two-tailed For a two-tailed or nondirectional statistical test, the p value for the calculated value
of t

Mean difference  The actual difference between the two population means; the hospital mean is sub-
tracted from the national mean

95% confidence  The interval that covers the true difference between the two population means

interval of the

difference

v To Obtain a One-Sample t Test Using SPSS:

e From the menus, choose:
Analyze
—Compare Means
—O0ne Sample t Test
» Select one or more variables to be tested against the hypothesized value. Enter a nu-
meric text value against which each sample mean is compared.

Note that the calculated t for our SPSS output is the same as that calculated with the as-
sistance of a hand-held calculator. (When minor differences occur, they are most likely due
to rounding.) The significance level or p value is 0.018, which is less than our previously
established alpha level of 0.05. SPSS reports results in terms of significance—what we pre-
viously described as the p value. The critical value of t for the predetermined alpha level is
not reported. The 95% confidence interval of the difference between the means is also pro-
vided. The 95% confidence interval of the mean is interpreted as meaning that we are 95%
confident that the interval [—0.1403, —1.4789] covers the true difference in the LOS be-
tween the hospital mean and the national mean for DRG XXX. It is calculated as

Clgs = (X1 — X5) = t[sV (1/ny) + (1/n,)]

One-Tailed t Test

Using the same information for the one-tailed z test, we will conduct a one-tailed t test. Re-
call that the quality improvement team is interested in determining if the administration of
a new antibiotic resulted in a decrease in the ALOS. As before, the null and alternative hy-
potheses are
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Ho: w1 = 5.49
Ha: < 5.49
a = 0.05

From the data in Exhibit 6-1, we know that the mean after administration of the antibi-
otic is 4.7121. Our previous calculations indicate that the required sample size is 66. Be-
cause this is a one-tailed test, the critical t value for an alpha of 0.05 and for 65 degrees of
freedom is approximately —1.664. (We had to approximate the critical t value because our
t table does not include the critical values of t for all possible degrees of freedom.) Our table
provides the critical values of t for 60 and 80 degrees of freedom. So a conservative esti-
mate of the critical t for 80 df was selected, —1.664. This is not much different from the crit-
ical value of t for 60 df, —1.671.

= X b
s/\/ﬁ
4.71 — 5.49

'~ 262Ve6

~0.78
T 2.62/8.124
=241

Since our teqe, —2.41, is less than or equal to —1.664, we reject the null hypothesis and
state that it appears that the new antibiotic may have been effective in reducing the hospital
ALQOS for DRG XXX. The 95% CI for the mean would be calculated as

Cles = X + t.(s/'V/N)
= 471 + 1.67(2.62/\/66)
= 5.71 + 1.67(0.322)
— 471 = 0.54
[4.17,5.25]

We are therefore 95% confident that the interval from 4.17 to 5.25 covers the true LOS
for our hospital patients after administration of the antibiotic.

When we use SPSS for the one-tailed t test, the output is the same as that for the two-
tailed test, as displayed in Exhibit 6-5. The significance of the t statistic or p value for a two-
sided test is reported. If we are conducting a one-tailed test, we must divide the p value when
reporting the results. For a one-tailed t test, the p value becomes 0.0095 (0.019/2), illustrat-
ing that it is easier to achieve statistical significance with a one-tailed test than with a two-
tailed test.
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Exhibit 6-5 SPSS Output for One-Sample t Test

One-Sample Statistics One-Sample Test
LOS LOS
N 66 Test Value = 5.49 t —2.414
Mean 47121 df 65
Std. Deviation 2.61807 Sig. (2-tailed) .019
Std. Error Mean .32226 Mean Difference —.77788
95% Confidence Interval  Lower —1.4215
of the Difference Upper —.1343

The t Test for Comparing Two Independent Sample Means

Sometimes we are interested in comparing means from two independent samples—for ex-
ample, comparing average charges by DRG or average charges by physician. In these ex-
amples, we would draw independent random samples from their respective populations. The
null hypothesis would state that there was no difference in the population means for the two
groups; the alternative hypothesis would be that there was a difference between the two pop-
ulation means:

Ho: 1 = po
Hal g # w2
a = 0.05

The formula for the t test for comparison of two independent sample means is
t X1 — X,
s,V (Uny) + (Uny)

where s, is called the pooled standard deviation. The pooled standard deviation is an av-
erage of the sample variances — n, and n,. The pooled standard deviation is found by

\/ ( — DS + (n, — s
Sp =

n1+n2_2

Degrees of freedom for the t test for two independent samples are equal to n; + n, — 2.
Exhibit 6-6 outlines the steps for solving the two-sample t test. The null hypothesis states
that the mean charges for Dr. Sparenocost and Dr. Spendtheleast are equal; the alternative
hypothesis states that the mean charges for Drs. Sparenocost and Spendtheleast are signifi-
cantly different. We are conducting a one-tailed, nondirectional t test. The SPSS output for
a two-sample t test appears in Exhibit 6-7.
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Exhibit 6-6 Calculation of t Test for Two Independent Sample Means

At Critical Care Hospital, the average charge for Dr. Sparenocost (Physician #1550) is $18,130 (rounded);
the average charge for Dr. Spendtheleast (Physician #1510) is $7,049. The question of interest is whether
the average charges for Dr. Sparenocost are significantly different from those for Dr. Spendtheleast.
1. State the null and alternative hypotheses, and set the alpha level.

Ho! b1 = po

Hipy # po

o = 0.05
2. Determine the region of rejection for a two-tailed two-sample t test where df = n; + n, — 2 =

(116 + 101) — 2 = 215, tyj = =1.96.

3. Calculate the sample statistics:

Dr. Sparenocost (#1550) Spendtheleast (#1510)

Mean  $14,694 $5,203
S.D. $24,685 $7,843
N 101 116

The pooled standard deviation:

S
P ng+n,—2

B \/ (N, — 1)si + (n; — 1)s3

/(101 — 1)24,685° + (116 — 1)7,843°
B 101 + 116 — 1

= 17,7854

Calculation of t:

$5,203 — $14,694
T 17,785.4V/(1/116) + (1/101)
— 9,491
2,420.5
= -39

4. Conclusion: teae = —3.92; teqic = terie (df = 215) = £ 1.96. We reject the null hypothesis and con-
clude that it appears that the average charges for Dr. Sparenocost are significantly different from the
average charges for Dr. Spendtheleast.
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Exhibit 6-7 SPSS Output for Two-Sample t Test

Group Statistics

Charges
Physician
1510 1550
N 116 101
Mean 5203.1953 14694.444
Std. Deviation 7843.4506 24685.3201
Std. Error Mean 728.24611 2456.28124

Independent Samples Test

Charges
Equal Equal
variances variances
assumed not assumed
Levene’s Test for F 6.397
Equality of Variances  Sig. .012
t-test for Equality t -3.921 —3.705
of Means df 215 117.563
Sig. (2-tailed) .000 .000
Mean Difference —9491.24862 —9491.24862
Std. Error Difference 2420.53525 2561.96407
95% Confidence Interval Lower —14262.26671 —14564.83023
of the Difference Upper —4720.23053 —4417.66700

v To Obtain an Independent Samples t Test Using SPSS:

» From the menus, choose
Analyze
—Compare Means
—Independent Samples t Test
« Select one or more quantitative variables. A separate t test is computed for each variable.
« Select a single grouping variable, and click “Define Groups” to specify two codes for
the groups you want to compare.

The results indicate that the calculated value of t, —3.921, is greater than the critical value
of t, —1.96. We therefore reject the null hypothesis and conclude that the mean charges for
each doctor are significantly different from each other. Why is it important to know if the
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charges of different physicians are significantly different from one another? The results
could help us determine if one physician is more cost-effective than another in the delivery
of health care services. Some possible questions that could be explored after obtaining this
result include: Does one physician order more diagnostic tests than the other? Is the ALOS
for the patients of one physician less than that for the other physician? If so, why? Answers
to these and other questions can help us to educate physicians on the variations in their prac-
tice patterns. This may lead to more cost-effective delivery of health care services. It is im-
portant to remember that we should be careful in drawing any definitive conclusions before
conducting further investigation. In the example, the mean charges for one physician were
significantly different from the mean charges for the other. When significant results are
achieved, the data analyst must conduct further investigation to determine if there is an ex-
planation for the difference. Perhaps the patients of one physician are older and sicker than
the other physician’s patients. It would also be important to compare charges between all
physicians who treat similar patients.

The results of our hand calculations are the same as the SPSS results. We are interested
in the results in the column labeled “Equal Variances Assumed.” SPSS automatically pro-
vides the results of Levene’s test, which compares the equality of the variances between the
groups. One of the assumptions of the t test is that the variances of the populations from
which the two samples are drawn are equal. Since the result of the test is not significant, the
variances of the two samples are assumed to be equal.

Excel may also be used for conducting the t test for comparing the means of two inde-
pendent samples. The Excel output appears in Exhibit 6-8. The interpretation of the output
is the same as that outline in Exhibit 5-8, with the exception of the “pooled variance.” The
pooled variance is the pooled standard deviation squared that appears in Exhibit 6-6.

Exhibit 6-8 Excel Output for Two-Sample t Test, Assuming Equal Variances

1510 1550
Mean 5203.195 14694.444
Variance 61519718.6060 609365068.3906
Observations 116 101
Pooled Variance 316331509.203
Hypothesized Mean Difference 0
df 215
t Stat -3.921
P(T<=t) one-tail 0.000
t Critical one-tail 1.652
P(T<=t) two-tail 0.000
t Critical two-tail 1.971
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Paired t Test

In a paired t test, we are comparing the means of two samples that have been drawn from
a single population. In a paired t test, the pair may be composed of two individuals who are
matched on a set of characteristics such as height and weight, or the individual may be self-
paired—serving as his or her own control. In this test, we are trying to determine if there is
a difference in the means between the individuals who make up the pair or in the difference
between “before” and “after” observations when one individual is serving as his or her con-
trol. The null and alternative hypotheses for the paired t test are

for a two-tailed test or

for a one-tailed test.
In the paired t test, t is calculated as

t = d/(sg)

where

d=DIN

and

sa= V3 dIN(N - 1)
and

> d*=3D*~ (3 D)NIN

D is the difference in the observations before and after treatment for each individual in
the study, or it is the difference in the observations between the experimental and control
groups. D or d is the observed mean difference between the “before” and “after” observa-
tions or the mean observed difference between the experimental and control groups.

Let’s consider an example where we are interested in improving the attitude of health in-
formation management (HIM) students toward statistics. There are 10 students in the statis-
tics class; each student is given an attitude assessment prior to watching a video on the role
of the HIM professional as a data analyst in health care. Following the video, the students
are given a second attitude assessment. The null and alternative hypotheses are

HO:B =0

Ha, D <0
a = 0.05



The tTest 177

The null hypothesis states that the difference between the pre- and postvideo assessment
cores equals zero. The alternative hypothesis states that the postvideo assessment scores will
be less than zero. The “before” and “after” data appear in Table 6-2.

Table 6-2 Pre- and Post-Attitude Assess-
ment of HIM Students

Before After Difference

Student X4 Xo D D?
1 2 28 -3 9

2 23 19 4 16

3 30 34 -4 16

4 7 10 -3 9

5 3 6 -3 9

6 22 26 -4 16

7 12 13 —1 1

8 30 47 -17 289

9 5 16 -1 121
10 14 9 5 25
Total 171 208 -37 511

This is a one-directional t test. Why do we expect the average difference to be less than
zero? Because we expect the postvideo attitude assessment score to be greater than the pre-
video attitude assessment score. When subtracting the postvideo assessment score from the
preassessment score, the expected result should be negative. The critical value of t for a one-
direction test with nine degrees of freedom, a = 0.05, is —1.833 (Appendix B, Table B-2).
For the paired t test, degrees of freedom are equal to n — 1 where n is the number of pairs.

Before we can calculate t, we must determine the sum of the squares of the difference
score.

>d?=3D" - [(3,D)’n]
=511 — [(—37)%/10
=511 — 136.9
= 374.10

The standard error of the difference is

sa="V > dn(n - 1)
= \V/374.10/10(9)

= 2.039
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and

d= ED/n

= —37/10
= =37

t = d/(sg)
= —3.7/2.039
= —1.815

Since the calculated value of t, —1.815, does not fall in the region of rejection for the crit-
ical value of t when « = 0.05, —1.833, we fail to reject the null and conclude that there is
not enough evidence to indicate that the video improved the attitude of HIM students re-
garding statistics.

We can use SPSS to calculate the paired t test; the results appear in Exhibit 6-9. Note that
the SPSS calculated t matches our “hand-calculated” t. For a two-tailed test, the exact p
value for a t calc of —1.815 (df = 9) is 0.103; for a one-tailed test, the p value is halved to
0.052.

v To Obtain a Paired-Sample t Test Using SPSS:

* From the menus, choose:
Analyze
—Compare means
—Paired Samples t Test
« Select a pair of variables as follows:
—Click each of two variables. The first variable appears in the “Current Selections”
group as “variable 1,” and the second appears as “variable 2.”
—After you have selected a pair of variables, click the arrow button to move the pair
into the “Paired Variables” list. You may select more pairs of variables. To remove
a pair of variables from the “Paired Variables” list, select a pair in the list and click
the arrow button.

We may also use Excel to calculate a paired sample t test. The Excel Output appears in
Exhibit 6-10. The Excel output includes the Pearson r correlation coefficient, which is
+0.87 (see Chapter 8).



Exhibit 6-9 SPSS Output for Paired Sample t Test

The t Test

Paired Samples Statistics

Pair 1
Prevideo Postvideo
Mean 17.1000 20.8000
N 10 10
Std. Deviation 10.2029 12.9168
Std. Error Mean 3.2265 4.0847

Paired Samples Test

Pair 1
Prevideo—
Postvideo
Paired Differences Mean —3.7000
Std. Deviation 6.4472
Std. Error Mean 2.0388
95% Confidence Interval Lower —-8.3121
of the Difference Upper 9121
t —1.815
df 9
Sig. (2-tailed) .103
Exhibit 6-10 Excel Output for Paired Sample t Test
Prevideo Postvideo
Mean 17.1 20.8
Variance 104.1 166.844
Observations 10 10
Pearson Correlation 0.870
Hypothesized Mean Difference 0
df 9
t Stat -1.815
P(T<=t) one-tail 0.051
t Critical one-tail 1.833
P(T<=t) one-tail 0.103
t Critical two-tail 2.262
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CONCLUSION

In this chapter, we have reviewed statistical procedures for testing hypotheses of the differ-
ences between means. We can use the z distribution for testing hypotheses involving one and
two independent samples. To use the z distribution, we must assume that the samples are in-
dependent and are normally distributed and the sample size must be greater than 30. The
population parameters . and o must be known if we are to use z.

When population parameters are not known, we can use the t distribution to test hy-
potheses of differences between population means. We can useto compare a sample mean
with a population mean or to compare the mean of two samples drawn independently from
two populations, and we can use the paired t test for comparing means between matched
pairs. In using both t and z, we are restricted to comparing means of two samples.

ADDITIONAL RESOURCES

Hall, H.I. 1998. The z test. Quality Resource 16, no. 5: 7.
Jekel, J.F. et al. 1996. Biostatistics, epidemiology, and preventive medicine. Philadelphia: W.B. Saunders.
Katz, D.L. 1997. Biostatistics, epidemiology, and preventive medicine review. Philadelphia: W.B. Saunders.



Appendix 6-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
2. Compare and contrast the z distribution with the t distribution.

3. Describe situations in which we would use one-tailed tests; describe situations in which
we would use two-tailed tests.

4. What assumptions must be met when using z and t for hypothesis testing? Why are these
assumptions not always strictly followed?

5. In hypothesis testing, what is meant by the term effect?

6. Exhibit 6-9 displays the results of a paired t test in which we were interested in deter-
mining if the attitudes of HIM students toward statistics changed after viewing a video.
We failed to reject the null hypothesis in this situation. What are some reasons for our
failure to reject the null in this situation?

MULTIPLE CHOICE

1. It is easier for a statistical test to achieve statistical significance when we conduct a:
a. nondirectional test
b. one-tailed test
c. two-tailed test
d. all of the above

2. If a statistical test is significant at the 0.01 level, it is:
a. also significant at the 0.05 level
b. not significant at the 0.05 level
c. also significant at the 0.001 level
d. also significant at the 0.0001 level

181
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For questions 3 through 6, refer to the problem below:

We are conducting a study of the age of nursing home patients in the county. The null and

alternative hypotheses are

HO: W= 80
Ha: p # 80

We have used the z test for evaluating our results when the critical values of z are =1.96

where oo = 0.05, and =2.58 where oo = 0.01.

3.

In this case, the null hypothesis is:
a. directional

b. nondirectional

c. a one-tailed z test

d. atwo-tailed t test

If the calculated z is +2.30, we would:

a. accept the Hg at o« = 0.05 but reject the Hg at a = 0.01
b. accept the Hy at = 0.05 and accept the Hg at o = 0.01
c. reject the Hy at o = 0.05 but accept the Hg at « = 0.01
d. reject the Hy at o = 0.05 and reject the Hg at « = 0.01

If the calculated value of z is +1.80, we would:

a. accept the Hg at o« = 0.05 but reject the Hg at = 0.01
b. accept the Hp at = 0.05 and accept the Hg at o = 0.01
c. reject the Hy at o = 0.05 but accept the Hg at « = 0.01
d. reject the Hy at o = 0.05 and reject the Hg at o« = 0.01

If the calculated value of z is —2.80, we would:

a. accept the Hg at o« = 0.05 but reject the Hg at « = 0.01
b. accept the Hy at « = 0.05 and accept the Hy at « = 0.01
c. reject the Hy at o« = 0.05 but accept the Hy at « = 0.01
d. reject the Hy at o = 0.05 and reject the Hg at o« = 0.01

. Which of the following is not needed to transform a score to a z score?

a. mean
b. variance
C. raw score
d. standard deviation

You believe that the hospital’s average length of stay for DRG XXX is significantly less
than the national average for the same DRG. Which of the following statistical tests
would be most appropriate for answering this question?

a. single-sample directional t test

b. single-sample nondirectional t test
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c. ttest for two independent samples
d. any of the above

9. In the above problem, the sample size is 100. The number of degrees of freedom for eval-
uating the statistical significance of the test result is:
a. 99
b. 98
c. 97
d. not enough information provided

PROBLEMS

1. As an HIM DRG analyst, you are interested in comparing the mean length of stay (LOS)
for Critical Care Hospital and the national mean for DRG 002, Craniotomy, Age Greater
Than 17 without CC. The hospital mean LOS is 4.17, and the standard deviation is 2.57.
The national average LOS for DRG 005 is 5.2 days. The summary data for Critical Care
Hospital appear in Table 6-A-1 and Exhibit 6-A-1.

Table 6-A-1 Frequency Distribution for Length of Stay, DRG 002 in 2004 at Critical Care Hospi-
tal (SPSS Output)

Cumulative
Frequency Percent Valid Percent Percent

Valid 1 2 8.7 8.7 8.7
2 4 17.4 17.4 26.1

3 6 26.1 26.1 52.2

4 2 8.7 8.7 60.9

5 4 17.4 17.4 78.3

6 2 8.7 8.7 87.0

7 1 4.3 4.3 91.3
10 1 4.3 4.3 95.7
11 1 4.3 4.3 100.0

Total 23 100.0 100.0

Exhibit 6-A-1 Length of Stay Descriptive Statistics
for DRG 002 in 2003 at Critical Care Hospital (SPSS

Output)

N Valid 23

Missing 0
Mean 4,17
Std. Error of Mean .536
Median 3.00
Mode 3
Std. Deviation 2.570
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a. State the null and alternative hypotheses and the a priori alpha level.

b. Calculate the difference between the hospital mean and the national mean using the
one-sample t test. What is the number of degrees of freedom? What is the resultant t
statistic? Is it statistically significant?

c. What are your conclusions?

2. For DRG 410, Chemotherapy without Acute Leukemia as Secondary Diagnosis, you
want to determine if there is a difference in the length of stay by two payors—Managed
Care and Medicare. The summary data appear in Tables 6-A-2 and 6-A-3.

Table 6-A-2 Frequency Distribution of Length of Stay
by Payer, DRG 410, at Critical Care Hospital in 2004
(SPSS Output)

LOS * Payor Crosstabulation

Count
Payor
Managed Care Medicare Total
LOS 1 12 3 15
2 5 16 21
3 1 5 6
4 13 8 21
5 10 5 15
6 1 0 1
7 1 0 1
8 2 1 3
9 1 1 2
13 1 0 1
14 1 0 1
15 2 1 3
23 1 0 1
54 0 1 1
Total 51 a4 92

Table 6-A-3 Mean and Standard Deviation
for Length of Stay by Payer, DRG 410, at Criti-
cal Care Hospital in 2004 (SPSS Output)

Payor Mean N  Std. Deviation
Managed Care 4.80 51 4.382
Medicare 4.71 a4 8.280

Total 476 92 6.379
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a. State the null and alternative hypotheses and the a priori alpha level.

b. Use the t test for two independent sample means to determine if the observed differ-
ence between the two means is statistically significant. What is the number of degrees
of freedom, the resultant t statistic, and the significance level?

c. What are your conclusions?

. You have been monitoring the lengths of stay for two of your physicians who discharge

the most patients from DRG 410, Chemotherapy without Acute Leukemia as a Sec-

ondary Diagnosis. The relevant statistics appear in Tables 6-A—4 and 6—-A-5. You specif-

ically want to know if the observed difference in the lengths of stay for physicians 1460

and 8210 is statistically significant.

a. State the null and alternative hypotheses and the a priori alpha level.

b. Use the t test for two independent sample means to determine if the observed differ-
ence between the two means is statistically significant. What are the number of de-
grees of freedom, the resultant t statistic, and the significance level?

¢. What are your conclusions?

Table 6-A-4 Frequency Distribution of
Length of Stay by Physician, DRG 410, in 2004
at Critical Care Hospital (SPSS Output)

LOS * Physician Crosstabulation

Physician
1460 8210 Total

LOS 2 13 21 34
3 1 1 2

4 1 0 1

5 1 1 2

13 1 0 1

14 0 1 1

15 1 0 1

23 1 0 1

Total 19 24 43

Table 6-A-5 Mean and Standard Deviation
for Length of Stay by Physician, DRG 410, in
2004 at Critical Care Hospital (SPSS Output)

Report
Std.
Physician Mean N Deviation
1460 4.68 19 5.812
8210 2.67 24 2.496

Total 3.56 43 4.350






CHAPTER 7

Analysis Of Variance

KEY TERMS  Analysis of Variance (ANOVA)
Sum of squares between (SSB)
Sum of squares within (SSW)
Total sum of squares (TSS)
Post hoc procedures
Tukey’s honest significant difference (HSD) test
Scheffé test

LEARNING At the conclusion of this chapter, you should be able to:

OBJECTIVES

3.

o

1.
2.

Define key terms.

Use ANOVA to calculate the differences between two or more sam-
ple means.

Use statistical software to conduct ANOVA procedures.

When the ANOVA procedure results in a significant F statistic, use
post hoc procedures to determine which means are significantly dif-
ferent.

Explain the purpose of post hoc tests.

Relate the concept of statistical power to beta error and sample size.

In Chapter 6, we discussed procedures for comparing two population means. But what do
we do when we want to compare means when more than two groups are involved? If, for ex-
ample, we had three populations, A, B, and C, for which we wanted to compare sample
means, we could conduct multiple t tests by comparing A and B, A and C, and B and C. But
this could become quite tedious: If we had 10 groups for which we wanted to compare
means, we would have to make 45 comparisons. Also, in making these multiple compar-
isons, we increase the probability of making a type | error—rejecting the null hypothesis
when it is true. The analysis of variance (ANOVA) procedure is used when we want to
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compare the observed differences between two or more means from two or more indepen-
dent samples.

ANALYSIS OF VARIANCE

As the name implies, ANOVA deals with variances rather than standard deviations and stan-
dard errors. In statistical terminology, variation refers to the sum of the squared deviations
from the mean and is often referred to as the sum of squares: E(X — X)?or Exz. When di-
vided by the appropriate degrees of freedom, it is referred to as the variance:
E(X — X)?/(N — 1). The goal of the ANOVA procedure is to explain the total variation in
a study. To do this, we must obtain two independent estimates of variance, one based on the
variability between groups (sum of squares between, SSB) and the other based on the vari-
ability within groups (sum of squares within, SSW). These combined (SSB + SSW) equal
the total sum of squares (TSS).

To conduct the ANOVA procedure, the dependent variable must be continuous and/or be
at least at the interval or ratio level of measurement. The samples should be drawn inde-
pendently and randomly and be normally distributed. However, in cases where large sam-
ples are drawn, this assumption may be relaxed because of the central limit theorem. The
variances of the group populations should be approximately equal. The independent variable
is discrete or categorical.

The F distribution is used to test the difference between the two variance estimates.
(ANOVA is often referred to as the F test, which is derived from the name of the individual
who developed it, Sir Ronald Fisher.) Like the t distribution, the F distribution is a family
of distributions based on the number of degrees of freedom associated with the variance es-
timates. The F distribution is a positively skewed distribution, so the calculated and critical
values of F are positive.

The F ratio is obtained by dividing the mean of the between-group variance estimate
(SSB) by the mean of the within-group variance estimate (SSW). If the obtained value of F
equals or exceeds the critical value of F, the null hypothesis is rejected, and we conclude
that the observed means differ more than what would be expected by chance alone. When
conducting the ANOVA procedure, the alternative hypothesis is always one of inequality or
nondirectional.

We will limit our discussion to the one-way ANOVA procedure. In the one-way ANOVA,
we want to determine the effect of only one factor, or independent variable (1V), on the de-
pendent variable (DV): for example, the effect of sex (V) on length of stay (DV). The one-
way ANOVA procedure for analyzing two groups is an extension of the t test for comparing
two sample means as t* = F. In the case of two independent samples, the ANOVA proce-
dure is used more often because it is considered more powerful in complex experimental re-
search designs. The sum of squares is the basic concept in the ANOVA procedure. We have
already learned to calculate the sum of squares in computing the variance. The raw score
formula for the sum of squares is
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Sx2=3x2—- (3 X?N

which is equal to E(X - )?)2, as previously described in Chapter 4.
The TSS can be broken down into the sum of squares within groups (SSW) and the sum
of squares between groups (SSB). Thus, the basic ANOVA model is

TSS = SSB + SSW

The TSS represents the variation of all the observations around the grand mean. The
grand mean is the mean of the samples when they are combined or treated as one. The grand
mean is represented by X . The SSB represents the variation of the sample means around the
grand mean, and the SSW represents the variation of the independent observations in each
sample around their respective means. We will now conduct a simple ANOVA procedure to
determine the significance of the difference between two sample means. In Table 7-1, the
length of stay (LOS) for patients discharged from the medical intensive care unit (MICU)
and surgical intensive care unit (SICU) are displayed. For this problem, we are interested in
determining whether there is a significant difference between the average LOSs (ALOSS)
for the SICU (X) and the MICU (Y). As with the t test, the first step is to state the null hy-
pothesis and set the alpha level:

Ho: 1 = po
Hal w1 # o
a = 0.05

Table 7-1 Patient Lengths of Stay (LOSs) in Surgical and Medical Intensive
Care Units (SICU and MICU), July 1-July 14, 20xx

Patient LOS Patient LOS

SICU (X4) X2 MICU (X) X2
21 441 9 81
19 361 10 100
18 324 20 400
13 169 14 196
15 225 18 324
20 400 5 25
22 484 8 64
25 625 11 121
17 289 12 144
10 100 13 169

3X; =180 SX7 = 3,418 3X, =120 SX5 = 1,624

X, =18 _ X, =12
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The null hypothesis states that there is no significant difference in the ALOSs for patients
discharged from the MICU and the SICU. The alternative hypothesis states that the observed
difference in the ALOSs for MICU and SICU is significant. In ANOVA, the alternative hy-
pothesis is always nondirectional since the F distribution is a positive distribution.

In conducting the ANOVA procedure, we first calculate the TSS, which is the sum of the
squares for the two groups treated as one, we use the following formula:

S =3%2 - (3X)N
= (3,418 + 1,1624) — [(180 + 120)%/20]
=542

Next, we find the sum of squares within each group (SSW). For the SSW, each group is
considered separately. The sum of squares for the SICU is

D¢ =3 X5 — [ X0)’IN]

= 3,418 — [(180)%/10]
=178

The sum of squares for the MICU is

D¢ =3XZ — [ X)°IN]

= 1,624 — (120)%/10
=184

So the total SSW is 178 + 184 = 362.

Since TSS = SSB + SSW, we could subtract the SSW from the TSS to obtain the SSB.
But to serve as a check on our calculations, we will directly calculate the SSB. The SSB is
a measure of the variation of the group means about the combined mean. When the group
means do not differ from each other, the SSB will be equal to zero. The greater the varia-
tion between the group means, the larger the SSB will be. The size of the SSB tells us how
large the effect of the independent variable is on the dependent variable. In our example, the
independent variable is type of care unit, and the dependent variable is the patient’s LOS.
The SSB is calculated as follows:

SSB = Y'ni(X; — X)?

where n; is the number of observations in each group, X is the overall mean, or grand
mean, and X; is the mean for each group. From Table 7-1, we know that the mean for the
SICU is 18 days, the mean for the MICU is 12 days, and the grand mean is 15 days. The cal-
culation for the SSB is
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SSB = >ni(X; — X)?
= 10(18 — 15)*+ 10(12 — 15)?
=180

Thus, in terms of our ANOVA model, we now have

TSS = SSB + SSW
542 = 362 + 180

Each of these sums of squares has a specified number of degrees of freedom. Since the
TSS refers to the two groups as one, the degrees of freedom is equal to n — 1. The degrees
of freedom for the SSW is equal to n; — 1, where n; is the number of observations in each
group. But since we have more than one group, the number of degrees of freedom for the
SSW will be equal to k(n; — 1), where k is equal to the number of groups. This latter for-
mula applies only when the sample size for each group is the same. The number of degrees
of freedom for the SSB is equal to k — 1, where k is the number of groups. In summary, the
degrees of freedom for the F ratio are:

Source of Variation Degrees of Freedon
SSB k—1
SSW k(n; — 1), only when all sample sizes are equal
TSS n—1

After the sum of squares for each source of variation has been calculated, the data are
summarized in an ANOVA table, as in Table 7-2. The components of the table are:

Source of Variation df Mean Square F
SSB k-1 SBB/df Means square SSB
Means square SSW
SSW k(in —1) SSWi/df
TSS n—-1

A new column appears in Table 7-2 that we have not yet discussed—the mean square col-
umn. In the F test, we are comparing the SSB mean square to the SSW mean square. The
mean squares are obtained by dividing the sum of squares for the SSB and SSW by their
corresponding degrees of freedom. The SSB mean square is an estimate of the common
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Table 7-2 ANOVA Table for Patient Length of
Stay in Medical and Surgical Intensive Care

Units

Mean
Source SS df Square F
SSB 180 1 180.00 8.95
SSwW 362 18 20.11
TSS 542 19

population variance that is independent of the variation in the group means; that is, how
much the group means differ from the overall mean. This is the effect on each observation
from belonging to that particular group and is due to the effect of the treatment. If the group
means tend to cluster around the grand mean, there is no treatment effect.

The SSW mean square is an estimate of the population variance that is independent of the
variance within groups; that is, how much the observations within each group are spread out
around the group mean. Variation within groups is considered error; this is because if each
subject within a group is treated the same, the expected outcome for each member of the
group should be similar. That is, the differences in observations within a group cannot be
due to differential treatment. Wide variation within a group would indicate that there was no
relationship between the independent variable (care unit) and the expected outcome, so any
effect could not be attributed to the independent variable. When we reject the null, we are
stating that the between-group variation is greater than the within-group variation. To obtain
the value of F, the SSB mean square is divided by the SSW mean square:

_ Mean square between groups
"~ Mean square within groups

If the population means are equal, indicating no effect, F will equal 1. If they differ, the
mean square SSB will be greater than the mean square SSW, and F will be greater than 1.

Recall that the F distribution is based on the degrees of freedom associated with the
between-group variance estimate and the within-group variance estimate. In our example,
there are two groups, so the degrees of freedom for SSB are equal tok — 1,0r2 — 1 = 1.
The within-group degrees of freedom are equal to k(n; — 1) or 2(10 — 1) = 18.

To determine whether the F value is significant at our preset alpha level (0.05), we refer
to the F table (Appendix B, Table B-3). In the F table, the degrees of freedom for the nu-
merator are represented in the columns, and the degrees of freedom for the denominator are
represented in the rows. To locate the critical value of F, we find the cell where the column
and row for the designated degrees of freedom intersect. For 1 and 18 degrees of freedom,
the critical value of F at .05 is 4.41. Since our calculated F ratio, 8.95, is larger than the crit-
ical value of 4.41, we reject the null hypothesis and conclude that it appears that the ob-
served difference in the ALOSs for the MICU and the SICU is statistically significant.



Analysis of Variance 193

When the value of F is significant, we conclude that the groups under study differ sig-
nificantly from each other; that is, the groups show more variation than what can be attrib-
uted to random sampling from populations with a common population mean. The greater
the effect, the larger the obtained F ratio. From the information contained in the ANOVA
table, we can compute a correlation ratio, eta®:

eta? = SSB/TSS= 180/542
= 180/542
=0.33

In our example, the correlation ratio is 0.33, or 33%. The correlation ratio explains how
much variation in the dependent variable is explained by the independent variable. So we
would state that 33% of the variation in length of stay is explained by the type of care unit.

To calculate this simple ANOVA procedure using SPSS, select “Compare Means” from
the “Analyze” drop-down menu. Then select “Means.” In the “Means” dialog box, type in
“LOS” as the dependent variable and “care unit” as the factor. Click “Options” for the de-
sired descriptive statistics and request the ANOVA table and eta®. The SPSS output appears
in Exhibit 7-1.

Exhibit 7-1 SPSS Output for “Compare Means”

Descriptives
Length of Stay
SICU MICU Total
Mean 18.0000 12.0000 15.0000
N 10 10 20
Std. Deviation 4.44722 4.52155 5.34100
Std. Error of Mean 1.40633 1.42984 1.19428
Minimum 10.00 5.00 5.00
Maximum 25.00 20.00 25.00
ANOVA
Length of Stay
Sum of Squares df Mean Square F Sig.
Between Groups (Combined) 180.000 1 180.000 8.950 .008
Within Groups 362.000 18 20.111
Total 542.000 19
Measures of Association
Eta
Eta Squared
Length of Stay * Care unit 576 332
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In the dialog box, click “Options” to select a wide range of descriptive statistics. In the
report section of Exhibit 7-1, the mean, standard deviation, variance, minimum and maxi-
mum values (range), and standard error of the mean are reported. The ANOVA table that ap-
pears in Exhibit 7-1 contains the information that we previously discussed except that the
exact p value, 0.008, is provided. Eta and eta® are the same as what we calculated previously.

v To Obtain a One-Way Analysis of Variance Using SPSS:

* From the menus, choose:
—Analyze
—Compare means
—Select one or more dependent variables
—Select a single independent factor variable
—Click “Options” for descriptive statistics and ANOVA table

We can also use Excel to conduct the one-way ANOVA procedure; the results appear in
Exhibit 7-2. The information provided is similar to the ANOVA output for SPSS. However,
Excel also displays the critical value of F, whereas SPSS does not.

Exhibit 7-2 Excel Output for One-Way ANOVA Procedure

Groups Count Sum Average Variance

SICU 10 180 18 19.778

MICU 10 120 12 20.444
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 180 1 180 8.950 0.008 4414
Within Groups 362 18 20.111
Total 542 19

ANOVA IN THE THREE-SAMPLE CASE

Determining if there is a difference between two sample means is rather straightforward.
But what do we do when we have more than two sample means? How do we know which
means are actually different from one another? When we are working with more than two
samples, we could have a situation where only two of the three means were different from
each other. Follow-up procedures, called post hoc tests , must be conducted to determine
which means are significantly different from one another. We will look at two post hoc tests:
the Scheffé test and Tukey’s honest significant difference (HSD) test.
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The Scheffé test performs simultaneous joint pairwise comparisons for all possible pair-
wise combinations of means. The Scheffé test uses the F distribution for testing the signif-
icance of the mean differences and is the most conservative method of making post hoc
multiple comparisons. The advantage of the Scheffé test is that it can be used when the n’s
in each group being compared are equal or unequal.

The Tukey HSD test uses the Studentized range statistic to make all of the pairwise com-
parisons between group means.

Let us now review an example where we wish to compare three sample means. Three
physicians were compared in regard to the hospital LOS of their respective patients follow-
ing a minor surgical procedure without complications. A sample of eight medical records
were selected for each physician; the LOSs appear in Table 7-3.

Table 7-3 Patient Length of Stay by Physician

A A? B B? c c?
4 16 4 16 5 25
5 25 5 25 3 9
5 25 4 16 3 9
4 16 3 9 3 9
6 36 4 16 3 9
6 36 5 25 3 9
4 16 3 9 4 16
5 25 3 9 5 25
SA =36 SA? =195 3B = 31 SB? =125 3C=29 SC% =111
A =4.875 B =3.875 C =3.625

For this problem, we are interested in determining whether there is a significant differ-
ence in the ALOS for the patients of these three physicians. The null and alternative hy-
potheses and alpha level are

Ho: pa = 1B = e
Hal pa # g # e
o = 0.05

The null hypothesis states that the ALOSs for the patients of the three physicians are
equal. The alternative hypothesis states that the ALOSs of the patients of the three physi-
cians are not equal. To determine the TSS, we treat the three groups as one group.

Sx%=3X%— (XN
= (195 — 125 — 111) — [(39 + 31 + 29)%/24]
= 22.625

Next, we find the sum of squares within each group (SSW). For the SSW, each group is
considered separately. The SSW for physician A is:
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S =3X2— [ X)?N]
= 195 — [(39)%/8]
= 4.875

The sum of squares for Physician B is

S =3 X2 [ X)’IN]
=125 — [(31)%/8]
= 4.875

The sum of squares for Physician C is

S =3 X2 - [ X)?N]
=111 — (29)%/8
= 5.875

So the total SSW is 4.875 + 4.875 + 5.875 = 15.625.
After calculation of the overall mean, 4.125, the SSB is:

SSB = Y'n; (X; — X)?
= 8(4.875 — 4.125) + 8(3.875 — 4.125)? + 8(3.625 — 4.125)?
=45+ 05+ 20
=70

Thus, in terms of our ANOVA model, we now have

TSS = SSB + SSW
22.625 = 7.0 + 15.625

The data are summarized in the ANOVA Table 7-4.

The critical F value for 2 and 21 degrees of freedom when « = 0.05 is 3.47. Since our cal-
culated F is greater than the critical F, we reject the null hypothesis and conclude that it ap-
pears that patient LOS does vary by physician. But with three groups of physicians, we do not
know if all three means are different from each other or if only two means are different from

Table 7-4 ANOVA Table for Physicians A, B,
and C

Source SS df  Mean Square F

SSB 7.0 2 3.5 4.73
SSw  15.625 21 0.74
SST 22.625 23
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each other. We must now perform post hoc procedures to determine where these differences
lie. Calculations for the Tukey and Scheffé post hoc procedures appear in Exhibit 7-3.

Exhibit 7-3 Tukey HSD and Scheffé’s Test

Tukey HSD
HSD = q(a) \% MSSSW In

Where MSgsyy is the mean square of the SSW, a is
the number of means to be compared, n is the
number in each group, and q is the df associated
with MSgg,

In our example, the df associated with MSgg, is
21. From the distribution of the Studentized range
statistic (Appendix B, Table B—4) for comparison
of three means and 21 degrees of freedom, the
critical value of t where o = 0.05 is approxi-
mately 3.55. Thus:

3.55V 0.74/8 = 1.08

The difference between any two means must be at
least 1.08.
Therefore:

The average length of stay for the patients of
physician A is significantly different from the av-
erage length of stay for patients of physician C.

Scheffé Test
In the Scheffé test, F must be computed to
make the comparison.

F = (X1 — X2)%[MSssw(ny + np)l/nin,

For means A and B,

(4875 — 3.875)°
~0.74(8 + 8)/64
=541
For means A and C,
(4.875 — 3.625)?
~ 0.74(8 + 8)/64

=8.45

For means B and C,
(3875 — 3.625)°
~0.74(8 + 8)/64
=034

To obtain the critical value of F, we mul-
tiply (k — 1) by the critical value for F in
the original ANOVA procedure. The num-
ber of groups in our analysis is three, so
k —1=2; and for 2 and 21 degrees of
freedom, F;; for comparison purposes is
6.94 (2 X 3.47).

For the differences between the two
means to be statistically significant, the
F’s calculated from the above formula
must exceed 6.94. In our example, the
calculated F exceeds the critical value for
F for only one comparison—means A and
C, Therefore,

W x|
[O]m|

A+

The average length of stay for the patients
of physician A is significantly different
from the average length of stay for pa-
tients of physician C.
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Calculating the correlation coefficient eta:

eta? = SSB/TSS = 7.415/22.625
=0.32

Eta? indicates that 32% of the variation in LOS is related to the physician. There could be
a multitude of reasons for the patients of a particular physician having a significantly longer
LOS, on average, than the other physicians. The physician may treat older patients or sicker
patients, or physician A may have practice patterns that are different from those of physi-
cians B and C. Whatever the reason, it should not be ascribed without investigation.

The results of the SPSS ANOVA procedure for the three means are displayed in Exhibit
7-4, and the results of the post hoc procedures appear in Exhibit 7-5. For both the Tukey
HSD and the Scheffé, the ALOSs for physicians A and C are significantly different. The
SPSS output in Exhibit 7—4 also displays homogeneous subsets by type of post hoc proce-
dure. For both the Tukey HSD and the Scheffé test, the ALOSs for physicians B and C and
physicians B and A are not significantly different. The results of the Excel ANOVA proce-
dure are displayed in Exhibit 7-6. Excel does not provide post hoc procedures for analyzing
differences between means for more than two groups.

Exhibit 7-4 SPSS Output for Comparing Group Means of More Than Two Groups

Descriptives
Length of Stay

A B C Total

N 8 8 8 24

Mean 4.8750 3.8750 3.6250 4.1250

Std. Deviation .83452 .83452 91613 .99181

Std. Error .29505 .29505 .32390 .20245
95% Confidence Lower Bound

Interval for Mean Upper Bound 4.1773 3.1773 2.8591 3.7062

5.5727 4.5727 4.3909 4.5438

Minimum 4.00 3.00 3.00 3.00

Maximum 6.00 5.00 5.00 6.00

ANOVA

Length of Stay

Sum of
Squares  df  Mean Square F Sig.

Between Groups 7.000 2 3.500 4704  .021
Within Groups 15.625 21 744
Total 22.625 23
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Exhibit 7-5 SPSS Output for Post Hoc Procedures Comparing Group Means of More Than Two Groups

Dependent Variable: Length of Stay

Multiple Comparisons

@Uses Harmonic Mean Sample Size

= 8.000.

Means for groups in homogeneous subsets are displayed.

95% Confidence
Interval
Mean
Difference Std. Lower Upper
(1) Physician  (J) Physician ()] Error  Sig. Bound Bound
Tukey HSD A B 1.00000 .43129 .075 —.0871 2.0871
C 1.25000(*)  .43129 .022 .1629 2.3371
B A —1.00000 .43129 .075 —2.0871 .0871
C 25000 .43129 .832 —.8371 1.3371
C A —1.25000(*) .43129 .022 —23371 —.1629
B —.25000 43129 832 —1.3371 .8371
Scheffé A B 1.00000 .43129 .091 —.1357 2.1357
C 1.25000(*)  .43129  .029 1143 2.3857
B A —1.00000 43129 .091 —2.1357 1357
o 25000 43129 .846 —.8857 1.3857
C A —1.25000(*) .43129 .029 —2.3857 —.1143
B —.25000 43129 846 —1.3857 .8857
LSD A B 1.00000(*) .43129 .031 .1031 1.8969
C 1.25000(*)  .43129  .009 .3531 2.1469
B A —1.00000(*) 43129 .031 —1.8969 —.1031
C 25000 .43129 568 —.6469 1.1469
C A —1.25000(*) .43129 .009 —2.1469 —.3531
B —.25000 43129 568 —1.1469 .6469
*The mean difference is significant at the .05 level.
Length of Stay
Subset for
alpha = .05
Physician N 1 2
Tukey HSD? C 8 3.6250

B 8 3.8750 3.8750

A 8 4.8750

Sig. .832 .075

Scheffé? C 8 3.6250

B 8 3.8750 3.8750

A 8 4.8750

Sig. .846 .091
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Exhibit 7-6 Excel Output for One-Way ANOVA for More Than Two Groups

SUMMARY
Groups Count Sum Average Variance

A 8 39 4.875 0.696

B 8 31 3.875 0.696

C 8 29 3.625 0.839
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 7 2 35 4.704 0.021 3.467
Within Groups 15.625 21 0.744
Total 22.625 23

STATISTICAL POWER

In the previous chapter, we discussed the effect that sample size has on the achievement
of statistical significance. We also discussed sample size in relation to type | and type Il er-
rors. Recall that type I error is the probability of rejecting the null hypothesis when it is true;
type Il error is the probability of accepting the null hypothesis when it is false. These con-
cepts may be represented as

o = Pr (rejecting Ho|Ho is true)
B = Pr (accepting Ho|Hy is false)

Ordinarily, in statistical testing, we control for type | error when we set the alpha level.
However, the more strict the alpha level, the more the probability of making a type Il error
increases. To get around this problem, we often increase the sample size because this re-
duces type Il error. Recall that the standard error of the mean is a function of sample size
as demonstrated by

SEy = 0'/\/;
SEx = ¢/ V 100 = 1/10c¢
SEx = o/ V 400 = 1/200¢

Therefore, we can say that increasing the sample size decreases sampling error and low-
ers the probability of committing a type Il error.

Another way to avoid making a type Il error is to conduct a statistical power analysis.
Power analysis helps us decide (1) how large the sample size must be for accurate and reli-
able statistical judgments, and (2) how likely it is that our sample test statistic will detect ef-
fects for a given sample size.
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We make many compromises when selecting the appropriate sample size. If our resultant
decisions are to be accurate, the sample size must be large enough so that sampling error is
small. But we do not want to choose sample sizes larger than needed because they are more
expensive and time consuming to implement and administer. On the other hand, with small
sample sizes, the results may be so imprecise as to be rendered useless.

Power analysis can help us select an appropriate sample size. The power of a statistical
test is the ability of the test to reject the null hypothesis given that the null is false. This is
represented as

B = Pr (rejecting Hg|Hg is false) =1 — B

In other words, statistical power (1 — B) is the probability of obtaining a statistically sig-
nificant difference when one actually exists. The power of a statistical test is the comple-
ment of a type Il error. Calculating statistical power for every possible test is beyond the
scope of this text. However, we will review one example in which we calculate sample size
controlling for type I error only and a second example in which we control for both type |
and type Il errors.

In most research, a beta error of 20% is set. This is equal to a zg of 0.84. In most cases
where a = 0.05, for a two-tailed test, z, is 1.96. In our example, we want to use a t test for
two independent samples to determine if the mean difference between the LOSs for two spe-
cial care units, MICU and SICU (Table 7-1), is at least 2 days. The standard deviation for
the two groups together, as indicated in Exhibit 7-1, is 5.34. The sample size required, con-
trolling for alpha error only, is

N = (z.)? X 2 X (s)%/d?
= (1.96)? X 2 X (5.34)%/(2)?
= 3.8416 X 2 X 28.5156/4
= 219.09/4
= 54,77, or 55 cases

The result, 55 cases, is the sample size required for one sample; however, since we want
to compare the ALOS for two samples, we multiply 55 times 2, which equals 110 cases. Or
we could state that 55 cases are required in each sample, when we are interested in deter-
mining if the difference is at least two days and controlling for alpha error only. When we
want to control for both alpha and beta error together, the formula becomes

N = (zo + 2p)* X 2 X (5)?/d?
= (1.96 + .84)% X 2 X (5.34)%/(2)?
= (7.84 X 2 X 28.5156)/4
= 447.125/4
= 111.78, or 112 cases
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Note that when we control for both alpha and beta errors together, the size of one sample
doubles. This illustrates how larger sample sizes help us control for beta error. If we wanted
to detect for even smaller differences between LOSs, such as one day, an even larger sam-
ple size would be required. We can readily see this by examining the mean difference ex-
pected in the formula above: the denominator would be changed from 4 (22) to 1 (1%). If we
are interested in detecting a difference of only one day, 447 cases would be required in each
sample (447.125/1).

For other types of statistical problems, the statistical website of the University of Cali-
fornia at Los Angeles has an online calculator for determining the power of a statistical test
(www.stat.ucla.edu).

CONCLUSION

When we are interested in comparing means of two or more samples, we use ANOVA pro-
cedures. ANOVA also requires that the samples be randomly drawn, normally distributed,
and independent of each other. When more than two samples are involved, and statistical
significance is found so that the null hypothesis is rejected, we must conduct post hoc pro-
cedures to determine which sample means differ. The Tukey HSD and the Scheffé test were
conducted to determine which of the three means differed from one another.

Last, we discussed the concept of statistical power. Statistical power helps us control for
beta error in conducting our research. One way to control for beta error is to select large
samples. Another is to use various formulas to determine the sample size appropriate for the
type of statistical test that we use. If we wish to detect small differences between the means
of the population under study, larger sample sizes will be required; if we wish to detect dif-
ference between sample means that may be somewhat larger, we can generally get by with
a smaller sample size. If the sample size is excessively large, we run the risk of detecting a
difference smaller than what is important, thereby not only wasting time and resources but
making interpretation of the results more problematic.
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Appendix 7-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
2. Explain each component of the ANOVA model. How is the F ratio obtained?

3. To conduct the ANOVA procedure, the dependent variable must fall upon which scale of
measurement? The grouping variable or independent variable falls upon which scale of
measurement?

4. When conducting ANOVA to compare the means of three groups, under what conditions
would we reject the null hypothesis? What conclusion would be drawn?

5. What is the purpose of conducting post hoc procedures?

MULTIPLE CHOICE

1. The CEO of Critical Care Hospital wants to compare average charges for congestive
heart failure patients with those of two other acute care facilities in the community.
Which of the following statistical tests would be most appropriate for answering the
guestion?

a. one-sample t test
b. t test for two independent samples
c. one-way ANOVA
d. any of the above

For questions 2 through 4, refer to the following:

You are using ANOVA to compare the average age of patients discharged from two
DRGs. In DRG XXX, there are 16 patients with an average age of 45. In DRG YYY, there
are 20 patients with an average age of 50.
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In the ANOVA table, the number of degrees of freedom for the SSB is:
a. 3

b. 2

c. 1

d. none of the above

The number of degrees of freedom for the SSW is:
a. 34

b. 35

c. 36

d. none of the above

The number of degrees of freedom for the SST is:
a. 34

b. 35

c. 36

d. none of the above

The ANOVA procedure may be used:

a. with large sample sizes

b. with small sample sizes

c. when comparing the means of four groups
d. all of the above

In the ANOVA procedure, we reject the null hypothesis when the calculated value of F
is:

zero

greater than the critical value of F

less than or equal to the critical value of F

equal to the critical value of F

bandd

all of the above

"o o0 oW

If we fail to reject the null in the ANOVA procedure:

a. the treatment had no effect on the subgroups under study

the observed differences between the group means are statistically significant
the observed differences between the group means are not statistically significant
aandc

all of the above

Poo0oT

In the ANOVA procedure, the variations of the observation around their respective
group means is an indication of:

a. within-group variation

b. between-group variation

c. variation among the combined groups

d. all of the above



Problems 205

9. We have conducted an ANOVA procedure in which we compared three population
means. The calculated F equals 4.704, and the critical value of F is 3.467. Under this
circumstance, we would:

a. reject the null hypothesis
b. conduct post hoc procedures
c. fail to reject the null hypothesis
d. aand b
10. You want to use the ANOVA procedure to compare the average length of stay of the pa-
tients of two physicians. The ANOVA procedure has the most power when:
a. the two sample sizes are equal
b. one sample is twice the size of the second sample
c. one sample is three times the size of the second sample
d. sample size has no effect on power
PROBLEMS
1. You have been analyzing hospital discharges from DRG 14, Intracranial Hemorrhage and

Stroke with Infarction. You want to know if there is a difference in the average age of
men and women discharged from DRG 14. The frequency distribution for discharges by
sex appears in Table 7-A-1. You have decided to use the ANOVA procedure to calculate
your results.

a. State the null and alternative hypotheses and the alpha level that you will use.

b. What is the mean age for men? What is the mean age for women?

¢. What is the calculated value of F? Is it statistically significant?

d. What is your conclusion?

. You also want to know if there is a difference in the average length of stay (ALOS) by

gender for patients discharged from DRG 14. The frequency distribution for ALOS by
gender appears in Table 7-A-2. You have decided to use the ANOVA procedure to cal-
culate your results.

a. State the null and alternative hypotheses and the alpha level that you will use.

b. What is the ALOS for men? What is the ALOS for women?

c. What is the calculated value of F? Is it statistically significant?

d. What is your conclusion?



206 CHAPTER 7 ANALYSIS OF VARIANCE

Table 7-A-1 Frequency Distribution of Age Table 7-A-2 Frequency Distribution of ALOS
at Discharge by Gender, DRG 14, in 2004 at at Discharge by Gender, DRG 14, in 2004 at
Critical Care Hospital (SPSS Output) Critical Care Hospital (SPSS Output)

Age * Gender Crosstabulation LOS * Gender Crosstabulation

Count Count
Gender Gender

Female Male Total Female Male Total

Age 22 LOS
23
26
39
44
46
47
49
50
52
55
56
57
57
57
58
58
60
60
64
68
68
70
70
71
71
72
72
73
75
76
77
77
78
83
84
86
86

3
11
11
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3. Physicians 2170 and 8060 have the most patients discharged from DRG 14. You want to
know if there is a difference in the average age and length of stay of patients of these two
physicians. The frequency distribution for age and length of stay for these two physicians
appears in Tables 7-A-3 and 7-A-4. You have decided to use the ANOVA procedure to

calculate your results.

a. State the null and alternative hypotheses and the alpha level that you will use.
b. What is the average age for patients of physician 2170? What is the average age of pa-

tients for physician 80607

c. What is the average length of stay for patients of physician 2170? What is the average

length of patients for physician 80607

d. What is the calculated value of F for each variable? Are they statistically significant?
e. What is your conclusion? What factors may be influencing your results?

Table 7-A-3 Frequency Distribution of Age at
Discharge, DRG 14, Physicians 2170 and
8060, in 2004 at Critical Care Hospital (SPSS
Output)

Age * Physician Crosstabulation

Count
Physician

2170 8060 Total

Table 7-A-4 Frequency Distribution of
Length of Stay, Physicians 2170 and 8060,
DRG 14, in 2004 at Critical Care Hospital
(SPSS Output)

LOS * Physician Crosstabulation

Count
Physician

2170 8060 Total

Age 26
44
46
50
52
56
57
57
57
68
68
70
75
76
77
84
86

OO -0 =2 =2 a0 —-000 - ==20-0
o--o-o0cocoo-o0o=-=2000-=0=
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-

Total
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CHAPTER 8

Correlation and
Linear Regression

KEY TERMS

Pearson r correlation coefficient
Coefficient of determination r
Scatter diagram

Slope

Intercept

Line of best fit

Regression line

Standard error of the estimate s,
Multiple regression
Multicollinearity

LEARNING
OBJECTIVES

Upon completion of this chapter, you should be able to:

1. Define key terms.

Define the Pearson r product moment correlation coefficient.
Construct scatter diagrams for variables X and Y.

Construct scatter diagrams using microcomputer statistical soft-
ware.

Interpret the Pearson r.

Compare the Pearson r with the coefficient of determination.
Explain “line of best fit” in linear regression.

Explain “slope” and “intercept” in the regression model.
Construct linear regression models using microcomputer statisti-
cal software.

10. Conduct hypothesis testing for the Pearson r and linear regression.
11. Interpret regression models for given situations.

12. Differentiate between simple regression and multiple regression.
13. Explain multicollinearity.

pwn

©ooNo O

209
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Often we are interested in determining relationships between variables such as age and length
of stay (LOS), age and survival time, or type of diet and cholesterol levels. To determine the
extent to which two variables are related, we can calculate a correlation coefficient. There are
many types of correlation coefficients, but we will limit our discussion to the Pearson r, or,
more formally, the Pearson r correlation coefficient. The Pearson r is a measure of the lin-
ear relationship between two variables; it is used when both variables under study fall on the
interval or ratio scale of measurement. There are other measures of association for variables
that are either nominal or ordinal; these will be discussed in Chapters 9 and 10.

CHARACTERISTICS OF PEARSON r

To calculate the Pearson r, measures must be taken on two variables, X and Y—for exam-
ple, height (X) and weight (Y). These measures are taken in pairs for each member of a sam-
ple randomly drawn from a population. The values of the calculated Pearson r range from
—1.00 to +1.00. A correlation coefficient of —1.00 indicates that the two variables have a
perfect negative relationship; a correlation coefficient of +1.00 indicates that the two vari-
ables have a perfect positive relationship; and a correlation coefficient of 0.0 indicates that
there is no relationship between the two variables.

A positive relationship between the two variables means that as the measures on one vari-
able increase, so do the measures on the second variable and, conversely, that as the mea-
sures on one variable decrease, so do the measures on the second variable. In other words,
the measures on each variable move in the same direction. Thus, we can say that there is a
direct relationship between the two variables.

A negative relationship means that the observations for the two variables are moving in
opposite directions. As measures tend to increase on one variable, they tend to decrease on
the second variable. In this situation, we say that there is an inverse relationship between the
two variables.

The underlying assumption for the Pearson r is that the relationship between the two vari-
ables is linear. Since relationships between variables are not always linear, one should con-
struct a scatter diagram or scatter plot to assess the type of relationship that exists between
the two variables. We can construct a scatter diagram by plotting one variable, X, on the
abscissa (horizontal axis) of a graph and plotting the second variable, Y, on the ordinate
(vertical axis). If the points appear to approximate a straight line, then the two variables are
linearly related, and it is appropriate to use the Pearson r. Scatter diagrams displaying pos-
itive and negative linear relationships appear in Figure 8-1; a scatter diagram indicating no
relationship is also displayed.

To further illustrate, let’s consider a health information management (HIM) example in
which we are interested in determining if there is a relationship between age (X) and total
charges for DRG 336, Transurethral Prostatectomy with CC. The scatter diagram of age (X)
and total charges (Y) appears in Figure 8-2.

Examination of the scatter diagram indicates that the relationship between the two vari-
ables is negative. Imagine a line drawn through the plots from the upper left corner down to
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Figure 8-1 Scatter Diagram of Linear Relationships
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Figure 8-2 Scatter Diagram, Age and Total Charges for DRG 336 (SPSS Output)
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the lower right. The diagram indicates that as age increases, total charges decrease. There-
fore, the relationship between the two variables is considered negative. The means and stan-
dard deviations for age and charges for DRG 336 appear in Exhibit 8-1. The SPSS output
for the Pearson r verifies that the relationship is negative (Exhibit 8-2). The Pearson r is
—0.471, which is statistically significant (p = 0.011). The results indicate a moderate neg-
ative correlation between our two variables, age and total charges. The SPSS output displays
the Pearson r for each variable with itself—for example, the Pearson r for “total charges”
with “total charges” is 1.00. The Excel output for the Pearson r appears in Exhibit 8-3.
Excel does not provide the p value for the Pearson r.

Exhibit 8-1 Means and Standard Deviations, Age and Total
Charges, DRG 336 (SPSS Output)

Total
AGE Charges

N Valid 28 28

Missing 0 0
Mean 77.4286 9803.7500
Median 77.0000 9003.5000
Mode 76.00% 6899.00%
Std. Deviation 9.11827 3326.68467
Minimum 58.00 6899.00
Maximum 92.00 21093.00

2Multiple modes exist. The smallest value is shown.
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Exhibit 8-2 SPSS Output for Pearson r, Age and Total Charges,

DRG 336
Total
AGE Charges
AGE Pearson 1 —471*
Correlation
Sig. (2-tailed) .011
N 28 28
Total Charges Pearson —.471* 1
Correlation
Sig. (2-tailed) 011
N 28 28
*Correlation is significant at the 0.05 level (2-tailed).

Exhibit 8-3 Excel Output for Pearson r,
Age and Total Charges, DRG 336

Age Totchg
Age 1
Totchg —0.47111 1

This relationship seems somewhat paradoxical. Why do total charges tend to decrease
with age? Most would expect the opposite to occur. We will consider this situation again
later in the chapter.

v To Obtain a Simple Scatter Diagram Using SPSS:

¢ From the menus, choose:
—Graphs
—Scatter
« Select the icon for “Simple.”
* Select “Define.”
» Select a variable for the x-axis and a variable for the y-axis.

These variables must fall on the interval or ratio scale of measurement.
CALCULATION OF THE PEARSON r

The Pearson r is a sample of the true population correlation value, which is denoted by the
Greek symbol p, and is subject to sampling variation. When calculating the Pearson r, we
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are interested in testing the null hypothesis that p = 0; that is, the true population correla-
tion is zero. A value of p = 0 indicates that there is no linear relationship between the two
variables of interest. A significant r indicates that there is a relationship between the two
variables of interest. Just as with the t and F tests, the obtained value of r is compared to a
critical value of r to determine its statistical significance. For the Pearson r, we may conduct
either a directional or nondirectional test.

The null and alternative hypotheses are

Ho: p= 0
Ha: p # 0 (two-tailed alternative)
Ha: p < 0 or p > 0 (one-tailed alternative)

The formula for calculating the Pearson r is

> Xy
\ /Exzzyz

Let us now follow the procedure for calculating the Pearson r for the two variables, LOS
and total charges for DRG 087, Pulmonary Edema and Respiratory Failure. It should be ob-
vious that the longer one stays in the hospital, the greater the charges, so one would expect
a positive correlation to result.

We will first construct a scatter diagram to assess the relationship between the two vari-
ables. We want to determine whether our assumption of linearity is tenable. The scatter di-
agram appears in Figure 8-3.

Figure 8-3 Scatter Diagram, Length of Stay (LOS) and Total Charges DRG 087
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Examination of the scatter diagram indicates a linear relationship between LOS and total
charges. As the LOS increases, so do total charges. We would expect the resultant Pearson r
to be positive.

The null and alternative hypotheses are

H02p=0
HA:p>O
a = 0.05

The null hypothesis states that there is no relationship between LOS and total charges.
The alternative hypothesis states that there is a positive relationship between LOS and total
charges, so we will be conducting a one-tailed test. We are using a one-tailed test because
we expect that the relationship between the two variables will be positive—that is, LOS and
total charges will move in the same direction. All cases discharged from DRG 087 are pre-
sented in Table 8-1. Microsoft Excel 200 was used to prepare the data required for calcu-
lating the Pearson r. Before we can calculate the Pearson r, we must first calculate SX2, Eyz,
and 2xy (from Table 8-1):

S =3 %2~ |3 0%/ n|
= 1,125 — [(173)?/ 34]
= 1,125 — (29,929 / 34)
= 1,125 — 880.26
= 244.74

Sy =32~ |3 (vl
= 7,915,583,426 — [(457,442)? | 34]
= 7,915,583,436 — (209,253,183,364 / 34)
= 7,915,583,436 — 6,154,505,393.06
= 1,761,078,032.94

Sy =3xY =3 00) /|
— 2,905,363 — [(173)(457,442) / 34]
— 2,905,363 — (79,137,466 / 34)
— 2,905,363 — 2,327,572.53
— 577,790.47
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r= J—Xy

A /zxzzyz

— 577,790.47 / \/(9,244.74)(1,761,078,032.94)

= 577,790.47 / \/431,006,237,781.74
= 577,790.47 / 656,510.65
= 0.88

Table 8-1 Total Charges and Length of Stay (LOS) for Patients Discharged from

DRG 087
LOS Total LOS? Total Charges? LOS x
Patient (X) Charges (Y) (X3 (Y?) Charges XY
1 1 $6,507 1 $42,341,049 $6,507
2 2 $8,771 4 $76,930,441 $17,542
3 2 $6,971 4 $48,594,841 $13,942
4 2 $7,405 4 $54,834,025 $14,810
5 3 $11,290 9 $127,464,100 $33,870
6 3 $8,944 9 $79,995,136 $26,832
7 3 $11,133 9 $123,943,689 $33,399
8 3 $4,304 9 $18,524,416 $12,912
9 3 $6,702 9 $44,916,804 $20,106
10 3 $12,143 9 $147,452,449 $36,429
11 3 $5,867 9 $34,421,689 $17,601
12 3 $11,061 9 $122,345,721 $33,183
13 3 $9,494 9 $90,136,036 $28,482
14 4 $10,920 16 $119,246,400 $43,680
15 4 $14,917 16 $222,516,889 $59,668
16 4 $8,222 16 $67,601,284 $32,888
17 4 $10,566 16 $111,640,356 $42,264
18 4 $9,389 16 $88,153,321 $37,556
19 5 $9,660 25 $93,315,600 $48,300
20 5 $15,106 25 $228,191,236 $75,530
21 5 $16,289 25 $265,331,521 $81,445
22 5 $8,285 25 $68,641,225 $41,425
23 6 $12,893 36 $166,229,449 $77,358
24 6 $14,840 36 $220,225,600 $89,040
25 7 $17,375 49 $301,890,625 $121,625
26 7 $16,925 49 $286,455,625 $118,475
27 8 $16,892 64 $285,339,664 $135,136
28 8 $12,462 64 $155,301,444 $99,696
29 8 $16,955 64 $287,472,025 $135,640
30 8 $21,754 64 $473,236,516 $174,032
31 9 $20,830 81 $433,888,900 $187,470
32 10 $23,915 100 $571,927,225 $239,150
33 10 $27,245 100 $742,290,025 $272,450
34 12 $41,410 144 $1,714,788,100 $496,920
Total 173 $457,442 1,125 $7,915,583,426 $2,905,363
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The calculated Pearson r is +0.88, indicating a strong positive relationship. Referring to
Table B-5 in Appendix B, we find that the critical value for r for 32 degrees of freedom,
o = 0.05 (df = n — 2, where n = number of pairs), and for a one-tailed test is 0.287. Since
our calculated value for r exceeds the critical value, we reject the null hypothesis and con-
clude that the relationship between LOS and total charges is statistically significant. The
SPSS descriptive statistics and results of Pearson r appear in Exhibit 8-4. The SPSS calcu-
lated Pearson r matches the results we obtained by using the hand-held calculator. The Ex-
cel output for the Pearson r appears in Exhibit 8-5.

Exhibit 8-4 SPSS Output for Pearson r, DRG 087, Total Charges and Length of Stay

Descriptive Statistics Correlations
Std. Total
Mean Deviation Charges LOS
Total 13454.1765 7305.20369 Total Pearson Correlation 1 .880**
Charges Charges Sig. (2-tailed) . .000
LOS 5.0882 2.72327 N 34 34
N 34 34
LOS Pearson Correlation .880** 1
Sig. (2-tailed) .000 .
N 34 34
**Correlation is significant at the 0.01 level (2-tailed).

Exhibit 8-5 Excel Output for Pearson r, DRG 087,
Total Charges and Length of Stay

Length of Stay Total Charges

Column 1 1
Column 2 0.880 1

v To Obtain Pearson r Using SPSS:

* From the menus, choose
—Analyze
—Correlate
—Bivariate
« Select two or more numeric variables.

It is important to remember that two variables’ correlation with one another does not nec-
essarily imply causality. We cannot assume that X causes Y or vice versa. In this example,
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we cannot state that long LOSs cause high charges. We can only state that there is a strong
relationship between the two variables. The two variables have a high correlation because
they vary together in some systematic way.

In the previous example, where we were considering the relationship between age and to-
tal charges, it would not be logical to conclude that old age causes lower charges. Intuitively,
this does not make sense. There must be some other variable at work that results in lower
charges for older people.

Just as sample size plays a role in statistical significance when determining the difference
between population means, it is also true when calculating the Pearson r. Small values of r
may be statistically significant when there are many observations, while large values of r
may not be statistically significant when there are a few observations.

From the Pearson r, we can calculate the coefficient of determination r2. The r? tells us
how much of the variation in Y is accounted for by the X variable. In our LOS (X) and total
charges (Y) example, r> = 0.774 (0.882). So we conclude that 77.4% of the variation in to-
tal charges for DRG 087 is explained by the patient’s LOS. The r? is a better measure of as-
sessing the strength of a relationship between the two variables, X and Y, than r. The Pearson
r alone can be used to make it seem as if the relationship between the two variables is much
greater than it actually is. For example, a Pearson r equal to 0.50 appears to indicate a fairly
strong relationship between two variables, when in fact only 25% (0.50?) of the variance is
accounted for by the two variables together. We will meet the coefficient of determination
again in our discussion of linear regression.

INTRODUCTION TO LINEAR REGRESSION

In the previous section, we learned that two variables may have a linear relationship as
designated by the Pearson product moment correlation coefficient. We also learned that cor-
relation does not imply causality. Just because two variables, X and Y, have a high correla-
tion with each other, we cannot assume that X causes Y or vice versa. For example, we would
not state that height causes weight. But we can use this information in other ways. If the re-
lationship between two variables is sufficiently large, we can predict the value of one vari-
able from another. The objective of linear regression is to estimate the value of one variable
that corresponds to the value of the other variable. In linear regression, we are trying to con-
struct a mathematical model that explains the relationship between two variables.

Linear regression requires a pair of observations (X and Y) for each subject. The Y vari-
able is usually designated as the dependent variable (DV), and the X variable is designated
as the independent variable (1V). Our goal, then, is to predict Y from a given value of X. In
our LOS (X) and total charges (Y) correlation problem discussed previously, the Pearson r
is equal to 0.88, and the coefficient of determination, r?, is equal to 0.774, indicating that
77.4% of the variation in total charges is explained by the variable LOS. Thus, there is a
strong relationship between the two variables, and it is appropriate to develop a regression
model that predicts total charges from LOS.



Introduction to Linear Regression 219

Just as with the Pearson r, in linear regression, a major assumption is that the two vari-
ables under consideration are linearly related. That is, a straight line can be used to describe
the relationship between the two variables. A scatter diagram should be constructed to as-
sess the relationship between the two variables. If the relationship appears to be linear, it can
be described by a straight line. From high school algebra, you may recall that the general
form for a straight line is

Y =a + bX

where b is the slope of the line and a is the point where the line intercepts the y-axis. The
slope represents the average change in Y that is associated with a change in X. The steeper
the slope, the greater the change in Y that is associated with a change in X, and the stronger
the relationship between the two variables of interest. The point at which a intercepts or
crosses the y-axis is an estimate of the average value of Y when X is equal to zero.

For any two points, it is easy to determine the equation for the straight line. However, if
there are three or more points, it is not possible to find a straight line that goes through all
points simultaneously unless the correlation is a perfect £1.0. Thus, in linear regression we
find the line that “best fits” all the points. The line of best fit is called the regression line.

The equation for the straight line indicates that for each observation of X, only one Y
value is possible. This indicates that the measurement is precise—that is, without error.
However, in reality, most relationship studies are inexact. And as you may recall from Chap-
ter 3, error is integral to the measurement process. So the regression equation is more real-
istically expressed as

Y=a+bX+e

where e represents error. The error term acknowledges that the prediction equation does not
perfectly predict Y. Thus, for a given X, there may be more than one Y. So the slope (b) in-
dicates the average change in Y associated with X.

To illustrate these principles, consider the following data set for X and Y:

X Y
0 5
1 7
2 9
3 11
4 13
5 15
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In this data set, for each value of X there is only one value for Y. The relationship between
the two variables is perfect, as shown in the scatter diagram in Figure 8-4. The regression
line perfectly fits the X, Y data points. And the corresponding regression equation is Y =
5 + 2X. Note that the regression line crosses the y-axis at 5—the average value of Y when
X is equal to zero.

Y=5+2X
=5+ 2(0)
=5
Figure 8-4 Scatter Diagram, X and Y
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However, such perfection is rarely encountered in health care data analysis. Most often, we
find the line that “best fits” all the points in the regression problems. As an example, con-
sider the following data set in the following table:
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In examining the data set, you can see that a given X variable does not take on the same
value for Y each time. Therefore, the regression line will not perfectly fit all of the (X, Y)
data points. The regression line that appears in the scatter diagram in Figure 8-5 is the line
that best fits all of the data points. The distance between the data points and the regression
line represents the error term in the regression equation. The distances of the observations
from the line of best fit are represented as

d, = Yi -Y
Figure 8-5 Scatter Diagram of Line of Best Fit
18
16 <
14 //
- o =
S 10 — 4
S
6 4
b <
4
2
0 T T T T T
0 1 2 3 4 5 6
X

where Y pronounced “y-hat”) is the predicted value of Y from X. Since the distance from
the regression line may be either positive or negative, we compute the sum of the squared
deviations from the regression line to measure the overall fitness of the line:

Ediz = E(Yi —V)?

or, when expressed as the error term,

SSE = (Y; — V)2

Error is the difference between the observed value of Y and the predicted value of Y (Y).
It is the amount of variation that cannot be accounted for in the regression model. The
predicted value of Y (Y) is the mean of the population of possible Ys for a given X. In
Figure 8-5, you can see that the regression line falls through the means of the observed val-
ues of Y for a given X. Exhibit 8-6 shows the descriptive statistics and correlations for X
and Y.
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Exhibit 8-6 Pearson r Correlation Coefficients for X and Y (SPSS Output)

Descriptive Statistics Correlations
X Y X Y

Mean 2.5000 10.0000 X Pearson Correlation 1 973**
Std. Deviation 1.75734 3.61370 Sig. (2-tailed) . .000
N 18 18 N 18 18
Y Pearson Correlation .973** 1

Sig. (2-tailed) .000 .

N 18 18

**Correlation is significant at the 0.01 level (2-tailed).

For some cases, we can set up the regression equation to predict either Y from X or X from
Y. In other cases, it makes more sense to designate one variable as the independent variable
(X) and the other variable as the dependent variable (Y). By convention, the DV is plotted on
the y-axis and the IV on the x-axis. The equation for the sample regression line is written as

?:30"‘[31

where Y is the estimated value of Y given by the population regression line, 3, (pronounced
“beta naught”) is a constant that indicates where the regression line “intercepts” the y-axis
and that estimates the average value of Y when X = 0, and 3, (pronounced “beta sub one™)
is the slope estimate that indicates the average change in Y associated with a change in X.
Both 3 and j3; are referred to as the population regression coefficients and may vary from
sample to sample.

The slope of the regression line (3,) indicates how steeply the regression line rises or
falls. If the slope has an upward slant, the slope is positive and indicates that the correlation
between X and Y is positive. If the slope has a downward slant, the slope is negative and in-
dicates that the correlation between X and Y is negative (Figure 8-1).

To develop the regression equation, we need to find the values for the regression coeffi-
cients, 3, and ;. As stated earlier, we can either regress Y from X or X from Y. To solve
for 3, and 3, when Y is regressed from X, we have:

Blyx = Exylzxz

and
Bny =Y — Bli
and to regress X from Y, we have

ley = Exylzyz
and

BOxy =X - Bl7
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To illustrate, we will use some hypothetical height and weight data of nine patients. These
data appear in Table 8-2. The scatter diagram and the descriptive statistics and correlations
for height and weight appear in Figure 8-6 and Exhibit 8-7, respectively. The scatter dia-
gram indicates a positive linear relationship.

Table 8-2 Height and Weight Measurements in Nine Patients

Height
(X) (in Weight
Patient  inches) ) X2 y? XY
1 60 135 3,600 18,225 8,100
2 60 120 3,600 14,400 7,200
3 62 140 3,844 19,600 8,680
4 62 130 3,844 16,900 8,060
5 62 135 3,844 18,225 8,370
6 64 145 4,096 21,025 9,280
7 66 150 4,356 22,500 9,900
8 68 150 4,624 22,500 10,200
9 68 160 4,624 25,600 10,880
Total _ 572 1,265 36,432 178,975 80,670
X =636 Y =1406 >X2=136,432 3>Y2=178,975 >=XY = 80,670
s, =813 s, =121 =x*=782 %y*=1,1722 3Sxy =272.2
Figure 8-6 Scatter Diagram, Height and Weight
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Exhibit 8-7 Descriptive Statistics and Correlation for Height and Weight (SPSS Output)

Descriptive Statistics

Correlations

Height Weight Height Weight

Mean 63.5556 140.5556 Height Pearson Correlation 1 .899**
Std. Deviation 3.12694 12.10487 Sig. (2-tailed) . .001
N 9 9 N 9 9
Weight Pearson Correlation .899** 1

Sig. (2-tailed) .001 .

N 9 9

**Correlation is significant at the 0.01 level (2-tailed).

Using the data in Table 8-2, we will regress Y (weight) from X (height):

Blyx = EXy/Exz
=272.2/78.2
= 3.48

Bny =Y - Bly

— 140.6 — 3.48(63.6)
140.6 — 221.328
—80.7

Thus, to predict weight from height, our regression equation is

~

Y = —80.7 + 3.48X

Alternatively, we can also regress X from Y as follows:

ley = EXy/Eyz

=272.2/1,172.2
=0.23

BOxy =X - B1 Y
— 63.6 — (0.23)140.6
= 31.3

So, to predict height from weight, the regression equation is

X =31.3 + 23Y
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We will now reproduce the scatter diagram that appears in Figure 8-6 with the addition
of the regression line (Figure 8-7).

Figure 8-7 Scatter Diagram and Regression Line—Height and Weight
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As we have already discussed, because regression deals with prediction, there is error. It
is unlikely that the predicted value of Y will correspond exactly to the actual value of Y for
a given value of X. Not all of the (X, Y) plots in Figure 8-7 fall on the regression line. For
example, if a woman is 5’5" (65 inches), we do not expect that her weight will be exactly
145.5 pounds, as predicted by the regression equation

Y = —80.7 + 3.48X
= —80.7 + 3.48(65)
= 1455

The predicted value is an estimate of the average weight of individuals who are of that
height. As you may recall, the average is the best estimate or the most typical value in a dis-
tribution. In this case, it is the best estimate of a person’s weight. If the correlation between
the two variables is low, there will be considerable variation of the actual values around the
predicted values, and if the correlation is high, the actual values will cluster more closely
around the predicted values. Only when the correlation is a perfect £1.0 (termed unity) will
the actual value match the predicted values.

If there is a great deal of scatter in the observed values of Y around the regression line,
the predicted values of Y based on the regression equation will not be very close to the ob-
served values of Y. The standard error of the estimate is a measure of scatter or spread of
the observed values of Y around the corresponding values estimated from the regression
equation.
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Just as we calculate the standard error of the mean, we can calculate the standard error
of the estimate, designated s,. The standard error of the estimate measures the scatter of
the observed values of Y around the predicted values of Y. To calculate the standard error of
the estimate,

Syx = VSSE/n — 2
where we have already seen that

SSE= 3 (Y; —V¥)°

But since it is rather cumbersome to calculate the SSE using this formula, we will use the
alternative (the standard deviation for Y appears in Table 8-2):

S =S, V1 —1r?
=121 V1 -0.808

=5.30

The standard error of the estimate is a type of standard deviation, the standard deviation
of the distribution of obtained Y scores about the predicted Y score, and it is used to develop
a confidence interval around Y.

INTERPRETATION OF THE STANDARD ERROR OF THE ESTIMATE
Recall from our discussion of the normal curve and standard deviation in Chapter 5 that

68% of the scores fall within the limits X + 1s
95% of the scores fall within the limits X + 1.96s
99% of the scores fall within the limits X = 2.58s

Since the standard error of thq estimate is a kind of standard deviation, we can make a
similar interpretation regarding Y in that the obtained scores (Y) are normally distributed
around Y. Thus:

68% of the obtained values of Y fall within the limits Y = s,
95% of the obtained values of Y fall within the limits Y = 1.96s,,
99% of the obtained values of Y fall within the limits Y = 2.58s,,

For example, suppose we have 10 students and we ask each his or her height and predict
his or her weight on the basis of the regression equation.

Y = —80.7 + 3.48X
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We then go back and determine the actual weight of each of these 10 students and com-
pare their actual weight to their predicted weight. The difference between their actual weight
(Y) and their predicted weight (Y) is error and describes how scores vary around the regres-
sion line that follows a normal distribution. Using the standard error of the estimate, we can
develop 95% confidence interval for Y. For small sample sizes, the t distribution for the ap-
propriate number of degrees of freedom is used to calculate the confidence interval rather
than the normal distribution.

Clgs =Y * 15.05(Syx)

For the predicted weight of 145.5, the standard error of estimate is 5.30. For seven de-
grees of freedom (n — 2), a = 0.05, the critical t is 2.365. The 95% confidence interval is
calculated:

Clgs =Y = tos(Syx)
— 1455 + 2.365 (5.30)
= 1455 + 12.53
[132.97, 158.03]

The interpretation is that for a height of 65 inches, 95% of the obtained weights will fall
within a range of 132.97 to 158.03 pounds.

Caution must be exercised when predicting Y beyond the range of the actual observations
upon which the data analysis is based. In our current problem where we are predicting
weight from height, the relationship described by the straight line may hold for a height of
70 inches, which is not too far beyond the range of observations in our data set. But as we
move to greater heights such as 75 inches or to lesser heights such as 36 inches, the same
linear relationship may no longer continue.

Also, note that in the regression equation for predicting weight from height, the constant
is —80.7. A negative value indicates that the regression line intercepts the y-axis at a point
below zero. The literal interpretation would be that for certain heights, the predicted weight
was less than zero. But we know that this is not possible. The constant is a fixed value that
ensures that the predicted value “comes out right.”

An example that illustrates both of these points is the case of a newborn whose length at
birth is 20 inches. According to our regression equation, the predicted weight is —11.1
pounds.

Y = —80.7 + 3.48X
— —80.7 + 3.48(20)
— —80.7 + 69.6
= —11.1

We know that this result is impossible. In this example, the newborn’s length is consider-
ably outside the range of observations upon which our regression equation was modeled,
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and the negative constant brings the predicted weight to less than zero. This demonstrates
the importance of the researcher’s judgment when using statistics. Empirical data together
with the judgment of the researcher are required in the decision-making process.

HYPOTHESIS TESTING

Before using the regression model for actual predictions, we must conduct a statistical
test to determine that the predicted slope does not equal zero. In regression, the hypothesis
test is for the regression coefficient for the slope of the line (3,), which is indicative of the
correlation between X and Y. The slope is defined as

_ Change in X
Slope = change in Y

If the slope equals zero, Y will be a constant that does not change with changes in X. The
null hypothesis is that the true slope of B, of the population regression line is equal to zero:

HO:B:O
Ha: B#0

The t distribution where df = n — 2 is used to test the null hypothesis, where

t= BV D
For our example of height and weight, 3, = 3 48, =x? = 78.2, and syx = 5.30. So,

t = 3.48/(5.30/\/78.2)
=3.48/ .60
—5.84

For « = 0.05, the tabled t for 7 degrees of freedom is 2.365. Since the calculated t is greater
than the critical t, we reject the null hypothesis of no linear relationship between X and Y.
To construct a 95% confidence interval around the regression coefficient, we have

Clos = B1 = to.0s(Syx/ V Exz)
= 3.48 + 2.365 (530/\/78.2)
= 3.48 + 2.365(0.60)
=348 = 1.42
[2.06, 4.90]

Thus, we are 95% confident that the population regression coefficient (B) falls between
2.06 and 4.90.
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COEFFICIENT OF DETERMINATION

We previously encountered the coefficient of determination (r) in our discussion of corre-
lation. The r? indicates the explanatory power of our linear model. The range of r?is 0 to
+1. The r? indicates the amount of variation in the dependent variable that is explained by
the independent variable. When r? = +1.0, the independent variable accounts for 100% of
the variation in the dependent variable, and all of the observations fall on the regression line.
When r? equals zero, the 1V accounts for no variation in Y and is not helpful in predicting
Y. The closer the r? is to 1, the better the fit of the regression line to the data points. When
r? is close to zero, the two variables are said to be independent of each other—that is, they
do not vary together in any systematic way. A high value for r? is necessary if our predic-
tions are to be accurate. We know that for the height and weight problem, r = 0.899 and
r? = 0.808. Thus, 80.8% of the variation in weight is explained by an individual’s height.

FTEST

SPSS provides an analysis of variance (ANOVA) model for the regression equation that in-
dicates the significance of the regression model. The components of the model are

Total variation = regression + residual (Error)
The variation that can be explained by the regression model is represented in the “re-
gression” component of the model, and the unexplained variance (error) is represented in
the “residual” component of the model. Thus, the model may be expressed as:

Total variation = explained variation + unexplained variation

These terms are explained below:

Variation in the ANOVA Model Source of Variation Explanation

Source of Variation Explanation

Total variation (Y — Y)? The sum of the squares of the differences between the
observed value of Y and the mean value of Y.

Explained variation (Y, — Y)? The sum of the squares of the differences between the
calculated value of Y and the mean value of Y.

Unexplained variation (Y — Y,)®>  The sum of the squares of the differences between the
observed value of Y and the calculated value of Y
for a given X.
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We will now use SPSS to verify our hand calculations. With slight differences due to
rounding, the SPSS output in Exhibit 8-8 matches our hand calculations—for example, our
hand-calculated standard error of the estimate is 5.3, and that provided by SPSS is 5.67. This
is because the SPSS-provided standard error was based on the adjusted r? of 0.781 rather
than the r? of 0.808 used in our calculations. The ANOVA indicates that the regression mode
is significant (F = 29.492, df = 1, 7, p = 0.001). We obtain the formula for the regression
model from the coefficients table in Exhibit 8-8. The constant is —80.625, and the 3, co-
efficient for the slope is 3.48; the calculated t for the slope is significant. Our hand-calcu-
lated t is slightly different from the t provided by SPSS because of the slight difference in
the standard error. As before, our regression model is

Y = —80.625 + 3.48X

Exhibit 8-8 SPSS Output for Regression Model, Height and Weight

Model Summary
Std. Error
Adjusted of the
Model R R Square R Square Estimate
1 .899° .808 781 5.66768
Predictors: (Constant), Height
ANOVAP
Sum of Mean
Model Squares df Square F Sig.
1 Regression 947.364 1 947.364 29.492 .001%
Residual 224.858 7 32.123
Total 1172.222 8
2 Predictors: (Constant), Height
b Dependent Variable: Weight
Coefficients®
Unstandardized Standardized
Coefficients Coefficients
Std.
Model B Error Beta t Sig.
1 (Constant) —80.625 40.772 -1.977 .089
Height 3.480 0.641 .899 5.431 .001
2 Dependent Variable: Weight
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The Excel output for the regression model appears in Exhibit 8-9. The Excel output is

similar to that for SPSS.

Exhibit 8-9 Excel Output for Regression Model, Height and Weight

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.899
R Square 0.808
Adjusted R Square 0.781
Standard Error 5.668
Observations 9
ANOVA
df SS MS F Significance F
Regression 1 947.364 947.364 29.492 .001
Residual 7 224.858 32.123
Total 8 1172.222
Standard Upper Lower Upper

Coefficients Error tStat  P-value Lower95%  95% 95.0% 95.0%
Intercept  —80.625 40.772 —-1977 0.089 -—177.035 15.785 —177.035 415.785
Height 3.480 0.641 5431 0.001 1.965 4.995 1.965 4.995

REGRESSION MODEL FOR LENGTH OF STAY AND TOTAL CHARGES

Now let’s return to the problem of LOS and total charges for DRG 087. We will now con-

struct a new scatter diag

ram that includes the regression line (Figure 8-8).
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Figure 8-8 Scatter Diagram, Length of Stay (LOS) and Total Charges, DRG 087
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In this example, the means and standard deviations are provided for both LOS and total
charges. The SPSS model summary displayed in Exhibit 8-10, indicates a fairly strong rela-
tionship between LOS and total charges that is statistically significant (r = 0.880,
p < 0.01). In the model summary, the investigator can find r?, the coefficient of determina-
tion, which in this example is 0.775, indicating that LOS accounts for approximately 77.5%
of the variation in total charges. The standard error of the estimate is 3,552.182. The Excel
regression statistics for LOS and total charges for DRG 087 are displayed in Exhibit 8-11.

In the “Coefficients” section, we find the regression coefficients, LOS or 3, =
2,360.879, and the constant, ﬁo = 1,441.467. SPSS also provides the 95% confidence in-
terval and standard error for both coefficients. The calculated t values for both coefficients
are also provided, along with their precise level of statistical significance, indicating that 3,
(slope) is statistically significant. The ANOVA regression model indicates that the regres-
sion model is statistically significant (F = 109.956, df = 1, 32, p < 0.01). The regression
model for predicting charges from LOS for DRG 087 is

Y = 1,441.467 = 2,360.879X
We will now look at several applications for linear regression.

v To Obtain Linear Regression Using SPSS:

 From the menus choose:
—Analyze
—Regression
—Linear
« In the “Linear Regression” dialog box, select a numeric dependent variable.
« Select one or more numeric independent variables.
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Exhibit 8-10 SPSS Output for Linear Regression, Length of Stay (LOS) and Total Charges, DRG 087
Descriptive Statistics
Total
Charges LOS
Mean 13454.1765 5.0882
Std. Deviation 7305.20369 2.72327
N 34 34
Model Summary
Std. Error
Adjusted of the
Model R R Square R Square Estimate
1 .880° 775 .768 3522.18201
?Predictors: (Constant), LOS
ANOVAP
Model Sum of Squares df Mean Square F Sig.
1 Regression 1364093516.247 1 1364093516.247 109.956 .000%
Residual 396984516.695 32 12405766.147
Total 1761078032.941 33
Predictors: (Constant), LOS
® Dependent Variable: Total Charges
Coefficients®
Unstandardized Standardized 95% Confidence
Coefficients Coefficients Interval for B
Std. Lower Upper
Model B Error Beta t Sig. Bound Bound
1 (Constant)  1441.467  1295.091 1113 274 —1196.547 4079.482
LOS 2360.879 225.146 .880 10.486 .000 1902.273  2819.486
2 Dependent Variable: Total Charges

Example 1: Predicting Cancer Deaths from Age

As researchers for a statewide cancer registry, we have been asked to build a regression
model for predicting colon cancer survival time based on the age of the patient at time of
diagnosis. The raw data for cancer survival time appear in Table 8-3. In building the re-
gression model, we have designated “Age at Diagnosis” as the independent variable (X), and
“Survival Time in Months” as the dependent variable (Y).
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Exhibit 8-11 Excel Output for Linear Regression, Length of Stay and Total Charges, DRG 087

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.880
R Square 0.775
Adjusted R Square 0.768
Standard Error 3522.182
Observations 34
ANOVA
df SS MS F Significance F
Regression 1 1364093516.25 1364093516.25 109.96 0.000
Residual 32 396984516.69 12405766.15
Total 33 1761078032.94
Standard Lower Upper Lower Upper
Coefficients Error tStat P-value 95% 95% 95% 95%

Intercept 1441.467 1295.09 1.11 0.27 —1196.54 4079.48 —1196.54 4079.48
Length 2360.879221  225.15 10.49 0.00 1902.27 2819.49 1902.27 2819.49

of Stay

Table 8-3 Age at Diagnosis and Survival Time in Months, for Cases of Colon
Cancer, Your Hospital, 20XX

Survival Time

Survival Time

Age at Diagnosis in Months Age at Diagnosis in Months
61 126 89 36
78 8 75 96
69 115 84 36
62 17 64 69
77 105 72 78
81 53 67 60
81 1 60 73
83 81 70 73
72 1 76 63
85 21 86 60
58 1 66 59
64 43 69 43
68 60 85 1
79 54 76 1
75 42 64 44
78 40 65 38
67 34 71 37
97 20 72 9
72 8 91 3
84 4 59 11
66 12
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The first step is to prepare a scatter diagram, which appears in Figure 8-9. The plots are
widely scattered, indicating that the relationship between age at diagnosis and survival time
may not be linear and that the correlation between the two variables may be small. The re-
gression line, which is somewhat flat, indicates a negative relationship between age and sur-
vival time.

Figure 8-9 Scatter Diagram—Age at Diagnosis of Colon Cancer and Survival Time in Months

Source: Data from Self-Instructional Manual for Cancer Registries, Book 7: Statistics and Epidemiology for
Cancer Registries, p. 121, US Department of Health and Human Services, Public Health Service, National In-
stitutes of Health, National Cancer Institute.
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The null and alternative hypotheses are
HO: Bl =0
Ha: B1 # 0
a = 0.05

Analysis of the SPSS output in Exhibit 8-12 does verify our suspicion that the relation-
ship between the two variables is slight and that the relationship is negative and not statisti-
cally significant (r = —0.210, p = 0.187). The r? indicates that the age variable accounts
for only 4% of the variance in survival time. The regression model (Exhibit 8-9) for pre-
dicting survival time from age at diagnosis is

Y = 97.063 — 0.743X
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Exhibit 8-12 SPSS Output for Pearson r Correlation, Age at Diagnosis of Colon
Cancer and Survival Time in Months

Correlations
Survival
Time in
Age Months
Age Pearson Correlation 1 —.210
Sig. (2-tailed) . .187
N 41 41
Survival Time in Months Pearson Correlation —-.210 1
Sig. (2-tailed) .187 .
N 41 41
Source: Data from Self-Instructional Manual for Cancer Registries, Book 7: Statistics Epidemiol-
ogy for Cancer Registries, p. 121, U.S. Department of Health and Human Services, Public Health Ser-
vice, National Institutes of Health, National Cancer Institute.

As expected, the calculated t for the regression coefficient, B;, is not significant
(t = —1.342, p = 0.187). So we fail to reject the null hypothesis and conclude that the re-
gression coefficient, 8, equals zero. The ANOVA model (see Exhibit 8-13) also indicates
that the regression model is not statistically significant. In this case, age at diagnosis is not
an important indicator in predicting patient survival time. We therefore conclude that we
cannot predict survival time from age at diagnosis. The B; coefficient indicates that there is
not much change in Y associated with a change in X.
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Exhibit 8-13 SPSS Output for Linear Regression, Age at Diagnosis of Colon Cancer and Survival Time in
Months

Descriptive Statistics
Std.
Mean Deviation N

Survival Time in Months 42.3415 33.56681 41

Age 73.6098 9.48915 41
Model Summary
Std. Error
Adjusted of the
Model R R Square R Square Estimate
1 .210° .044 .020 33.23527
2 Predictors: (Constant), Age
ANOVAP
Model Sum of Squares df Mean Square F Sig.
1 Regression 1990.474 1 1990.474 1.802 .1878
Residual 43078.745 39 1104.583
Total 45069.220 40

Predictors: (Constant), Age
® Dependent Variable: Survival Time in Months

Coefficients?

Unstandardized Standardized 95% Confidence
Coefficients Coefficients Interval for B
Std. Lower Upper
Model B Error Beta t Sig. Bound Bound
1 (Constant)  97.063  41.093 2.362 .023 13.944  180.182
Age —.743 .554 —.210 —1.342 187 —1.864 377

2 Dependent Variable: Survival Time in Months

Example 2: Predicting Total Charges from Age

Earlier, we had an example where the total charges appeared to decrease with the age of the
patient. We will now examine this phenomenon in more detail for DRG 336, Transurethral
Prostatectomy with CC. The number of patients discharged from DRG 336 is 28. The de-
scriptive statistics for total charges and age appear in Exhibit 8-1, and the scatter diagram
with fitted regression line appears in Figure 8-10.
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Figure 8-10 Scatter Diagram with Fitted Regression Line, Age and Total Charges
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The Pearson r for age and total charges appears in Exhibit 8-14. The Pearson r is —0.471,
p = 0.011. Even though the correlation appears to be moderate, age is accounting for only
22.2% of the variation in total charges. There must be something else at work that is caus-
ing this to occur. Another variable that affects total charges is LOS, as we have already
demonstrated. The correlation matrix in Exhibit 8-14 provides the correlations between to-
tal charges and length of stay (r = 0.838) and total charges and age (r = —0.471).

Exhibit 8-14 SPSS Output for Pearson r Correlation Coefficients for Total Charges,
Length of Stay (LOS), DRG 336

Correlations
Total
Charges AGE LOS
Total Charges Pearson Correlation 1 —.471* .838**
Sig. (2-tailed) . .011 .000
N 28 28 28
AGE Pearson Correlation —.471* 1 -.310
Sig. (2-tailed) .011 . .108
N 28 28 28
LOS Pearson Correlation .838** -.310 1
Sig. (2-tailed) .000 .108 .
N 28 28 28
*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.01 level (2-tailed).
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For DRG 336, there are two third-party payers—Medicare and commercial. Since
“Payer” is a nominal-level variable, we cannot correlate payer with total charges, age, or
LOS using the Pearson r. However, if we compare the mean total charges, age, and LOS by
third-party payer, we find the observed differences between the means to be statistically sig-
nificant (Table 8-4). Substituting eta for the Pearson r, we find that the relationships be-
tween LOS and payer and between total charges and payer are moderate, with etas of 0.428
and 0.538, respectively. However, there is a strong relationship between payer and age,
eta = 0.708. Thus, “Third-Party Payer” may be a confounding variable explaining why to-
tal charges decrease as age increases. In Table 84, we can see that the ALOS for Medicare
patients, 1.82 days, is less than the ALOS for patients in the commercial payer category, 3.27
days.

Table 8-4 Mean Age, Length of Stay (LOS), and Total Charges by Third-Party Payer, DRG 336

Medicare Mean Commercial Mean F Jo) eta
Age 82.5 69.5 26.16 <.001 .708
LOS 1.82 3.27 5.82 .023 .428
Total Charges $8,389.35 $11,989.64 10.61 .003 .538

Since these variables, including payer, correlate well with total charges, we can develop
a simple regression model for each of these independent variables separately. (Linear re-
gression allows us to use nominal-level variables in which there are two categories.) The re-
gression models for LOS, age, and payer appear in Exhibits 8-15 through Exhibit 8-17.
Each of the three models below is statistically significant:

Predictor Model r?
Length of Stay Y = 5,845.578 + 1.654.1621 0.702
Age Y = 23,111 + (—171.8781X) 0.222

Payer Y = 7,489.282 + 900.071X 0.290
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Exhibit 8-15 SPSS Regression Statistics for Total Charges and Length of Stay (LOS), DRG 336

Model Summary
Std. Error
Adjusted of the
Model R R Square R Square Estimate
1 .838? 702 .691 1850.07943
2 Predictors: (Constant), LOS
ANOVAP
Sum of Mean
Model Squares df Square F Sig.
1 Regression 209811792.289 1 9209811792.289 61.298 .000%
Residual 88992640.961 26 3422793.883
Total 298804433.250 27
?Predictors: (Constant), LOS
b Dependent Variable: Total Charges
Coefficients?
Unstandardized Standardized 95% Confidence
Coefficients Coefficients Interval for B
Std. Lower Upper
Model B Error Beta t Sig. Bound Bound
1 (Constant) 5845.578 614.679 9.510 .000 4582.086 7109.069
Payer 1654.162 211.278 .838 7.829 .000 1219.874 2088.449
# Dependent Variable: Total Charges

The strongest model is the one produced by the independent variable, LOS. This is evi-
denced by the B, coefficient and the r?, which indicates that 70.2% of the variation in total
charges is accounted for by LOS. Does this mean that we can sum the r? for the other two
variables to determine the total amount of variation in total charges? The answer is no. This
is because each variable was analyzed separately—not in relation to how they act together.

In addition, by looking at each variable separately, we increase the probability of making a
type | error.
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Exhibit 8-16 SPSS Regression Statistics for Total Charges and Age, DRG 336

Model Summary
Std. Error
Adjusted of the
Model R R Square R Square Estimate
1 4718 222 192 2990.28523
Predictors: (Constant), AGE
ANOVAP
Sum of Mean
Model Squares df Square F Sig.
1 Regression 66317483.834 1 66317483.834 7.417 0112
Residual 232486949.416 26 8941805.747
Total 298804433.250 27
#Predictors: (Constant), AGE
® Dependent Variable: Total Charges
Coefficients®
Unstandardized Standardized 95% Confidence
Coefficients Coefficients Interval for B
Std. Lower Upper
Model B Error Beta t Sig. Bound Bound
1 (Constant)  23111.999  4919.310 4698 .000 13000.213 33223.785
Payer —171.8778 63.113 —.471 2723 .011 —301.608 —42.147
2 Dependent Variable: Total Charges
Adjusted r? in SPSS:
The sample r? tends to optimistically estimate how well the models fit the population. The model usually
does not fit the population as well as it fits the sample from which it is derived. Adjusted r? attempts to
correct r? to more closely reflect the goodness of fit of the model in the population.
Source: Data from SPSS 12.0 for Windows, Copyright SPSS Inc. 2003, Chicago, Illinois, USA.
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Exhibit 8-17 SPSS Regression Statistics for Total Charges and Payer, DRG 336

Model Summary

Std. Error
Adjusted of the

Model R R Square R Square Estimate

1 .538? .290 .262 2857.08646

2 Predictors: (Constant), Payer

ANOVAP
Sum of Mean

Model Squares df Square F Sig.

1 Regression 86567914.822 1 86567914.822 10.605 .003?

Residual 212236518.428 26 8162943.016

Total 298804433.250 27

?Predictors: (Constant), Payer
b Dependent Variable: Total Charges

Coefficients®

Unstandardized Standardized 95% Confidence

Coefficients Coefficients Interval for B

Std. Lower Upper

Model B Error Beta t Sig. Bound Bound
1 (Constant) 7489.282  892.553 8.391 .000 5654.613 9323.951
Payer 900.071  276.390 .538 3.257 .003 331.944 1468.198

# Dependent Variable: Total Charges

To determine the effect of the three independent variables together on the dependent vari-
able, total charges, we can develop a multiple regression model. This discussion will serve
only as a brief introduction to multiple regression. Basically, in multiple regression we are
incorporating more than one independent variable into the model. This procedure usually
provides a fuller explanation of the effects on the dependent variable. Also, the effect of a
single variable is made more certain. The multiple regression model is an extension of the
bivariate model and is symbolized as

Y = Bo+ BiXy + BoXy + BsXz... + BX €

The interpretation of the constant in the above model is the same as that for simple re-
gression—the average value of Y when each of the independent values equals zero. The in-
terpretation for slope is slightly different. In the multiple-regression situation, the slope is
interpreted as the average change in Y associated with a unit change in X when the other in-
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dependent variables are held constant. Thus, we are able to separate out the effect of any in-
dependent variable (X,) from any distorting influences of the other independent variables.
This is sometimes referred to as partial slope or partial regression coefficient.

Now let us develop the regression model using the three independent variables together.
SPSS provides several methods for entering the independent variables into the regression
model: enter, where all variables appear in the model whether or not they are significant,
and forward, backward, and stepwise. In the other methods, a variable is entered into the
model on the basis of certain entry or removal criteria. We will use the stepwise multiple-
regression procedure, which examines each variable in the model in a block (together) at
each step for entry or removal of each independent variable. The stepwise method produces
two regression models—one with LOS as the sole predictor variable and the other adding
age as a second predictor variable. “Payer” does not enter the regression model.

Upon examination of the two models (Exhibit 8-18), we see that in model 1, the variable
LOS alone accounts for 70.2% of the variance in total charges. If we add age to the model,
the amount of variance accounted for by the two variables together improves to 75.1%. The
model may help explain the variation in charges, but it still does not help us answer why
charges decrease with age. This illustrates a problem that occurs with multiple regression:
two of the independent variables are highly correlated with one another. In this example,
payer and age are highly correlated (eta = 0.708). Since payer is highly correlated with age,
the resultant statistics in the regression model become unstable. When two independent vari-
ables are highly correlated with each other, a phenomenon often termed multicollinearity,
it is difficult to separate the effects of each independent variable on the dependent variable.

In this DRG, there are only two payers—Medicare and commercial PPO. The Medicare
group has a smaller LOS (Table 8-5), and hence lower total charges than the commercial
payer, even though the average age of Medicare patients is 82.53 versus 69.55 for the com-
mercial payer group. Even though the payer variable does not appear in the multiple re-
gression model, this could be an explanation for the decrease in total charges by either age
or LOS because these two variables are so closely related to the payer variable. This may
also suggest that the third-party payer has a strong influence on a patient’s LOS.
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Exhibit 8-18 SPSS Regression Statistics, Total Charges from Length of Stay, Age and Payer, DRG 336

Model Summary

Change Statistics

Adjusted Std. Error R
R R of the Square F Sig. F
Model R Square Square Estimate Change Change dfl df2  Change
1 .838% 702 .691 1850.07943 .702 61.298 1 26 .000
2 .867° 751 732 1723.40382 .049 4,963 1 25 .035
2 Predictors: (Constant), LOS
b predictors: (Constant), LOS, AGE
ANOVA®
Sum of Mean
Model Squares df Square F Sig.
1 Regression 209811792.289 1 209811792.289 61.298 .000%
Residual 88992640.961 26 8162943.016
Total 298804433.250 27
2 Regression 224551415.172 2 112275707.586 37.802 .000°
Residual 74253018.078 25 2970120.723
Total 298804433.250 27
2 Predictors: (Constant), LOS
b predictors: (Constant), LOS, AGE
¢ Dependent Variable: Total Charges
Coefficients®
Unstandardized  Standardized 95% Confidence
Coefficients Coefficients Interval for B
Std. Lower Upper
Model B Error Beta t Sig. Bound Bound
1  (Constant) 5845.578 614.679 9.510  .000 4582.086 7109.069
LOS 1654.162 211.278 .838 7.829  .000 1219.874 2088.449
2  (Constant) 12787.664  3168.430 4,036 .000 6262.161 19313.167
LOS 1511.082 207.026 765  7.299  .000 1084.704 1937.431
AGE —
—85.236 38.262 —.234 2228 .035 —164.038 —6.434
2 Dependent Variable: Total Charges
Excluded Variables®
Collinearity
. Statistics
Partial
Model Beta In t Sig. Correlation Tolerance
1 AGE —.2347 —.2.228 .035 —.407 .904
Payer .220° 1.958 .062 .365 .817
2 Payer .101° 671 .509 136 451

2Predictors in the Model: (Constant), LOS
b predictors: in the Model: (Constant), LOS, AGE
¢ Dependent Variable: Total Charges
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Table 8-5 SPSS Output of Means of Total Charges and Length of Stay (LOS) by Payer,
DRG 336

Payer Total Charges AGE LOS
Medicare Mean 8389.3529 82.5294 1.8235
N 17 17 17
Std. Deviation 1376.61351 6.60604 .95101
Commercial PPO Mean 11989.6364 69.5455 3.2727
N 1 1 1
Std. Deviation 4265.15513 6.48635 2.19504
Total Mean 9803.7500 77.4286 2.3929
N 28 28 28
Std. Deviation 3326.68467 9.11827 1.68521
CONCLUSION

In this chapter, we explored correlation and linear regression. We can use the Pearson r cor-
relation coefficient to determine whether there is a relationship between two variables, X
and Y. For the Pearson r, the variables must be at least at the interval scale of measurement;
furthermore, it is assumed that the relationship between the two variables is linear. The Pear-
son r correlation coefficient ranges from —1.00, indicating a perfect negative correlation, to
+1.00, indicating a perfect positive correlation. A correlation coefficient of 0.00 indicates
no linear relationship. Prior to calculating the Pearson r, a scatter diagram should be con-
structed to determine if the relationship between the two variables is linear.

If two variables have a high correlation with one another and the relationship is linear, it
may be possible to predict one (Y) from our knowledge of the other (X). When predicting Y
from X, we are constructing a regression model. The components of the regression model
are Y = a + BX where a is the intercept and B is the regression coefficient. The intercept is
the average of Y when X is equal to zero; the regression coefficient represents the average
change in Y that is associated with a unit change in X. In making predictions from regres-
sion models, we must be careful to limit the range of X to the observations that were used
to develop the model.

In both the Pearson r correlation and linear regression, we can request the coefficient of
determination, r2. The r? can help us determine the power of the model; it tells us how much
of the variation in the dependent variable can be explained by the independent variable.

ADDITIONAL RESOURCES

Lewis-Beck, M.S. 1986. Applied regression: An introduction. Beverly Hills, CA: Sage Publications.



Appendix 8-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.

2. What is the Pearson r? At what level(s) of measurement must the variables be in order to
use the Pearson r?

3. What is the range for the Pearson r? How is the Pearson r statistic interpreted? Explain
the concepts of positive linear relationship and negative linear relationship.

4. Describe the relationship between the Pearson r and the coefficient of determination, r?.

5. What is the interpretation of the regression line in a scatter diagram?

IS

Explain simple linear regression and multiple regression. Give an example for each.

MULTIPLE CHOICE

1. To calculate the Pearson r, the two variables should be:
a. normally distributed
b. linearly related
c. random
d. all of the above

2. In the scatter diagram below, the Pearson r can be described as:
a. equal to 0.0
b. equal to +1.0
C. negative
d. positive

246
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. If the Pearson r is equal to +1.0, we can say that:

a. X causesy

b. y causes x

c. there is a perfect positive relationship between x and y
d. x and y are negatively correlated

. Which of the following values for the Pearson r indicates the strongest relationship?
a. +0.85

b. +0.76

c. 0.0

d. —0.89

. Which of the following values for the Pearson r indicates the weakest relationship?
a. +0.85

b. +0.76

c. 0.0

d. —0.89

. If we cannot predict y from x, we would conclude that the Pearson r is:
a. 0.0

b. negative

C. positive

d. cannot determine from information provided

. We have calculated a Pearson r for length of stay (Y) and age (X). Our result is r =
—1.16.We therefore conclude that:

a. as age increases, the length of stay decreases

b. as age increases, the length of stay increases

c. we cannot predict length of stay from age

d. we have made an error in our calculations
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8. We have calculated the Pearson r for length of stay (X) and total charges (Y). Our result
isr = +0.64. We therefore conclude that:
a. as length of stay increases, total charges decrease
b. as length of stay increases, total charges increase
c. we cannot predict total charges from length of stay
d. we have made an error in our calculations

PROBLEMS

1. You are studying DRG 105, Cardiac Valve Procedures and Other Major Cardiothoracic
Procedures without Cardiac Catheterization, for Critical Care Hospital. Using the data
provided in Table 8-A-1, calculate the Pearson r for each of the following pairs:

» Age and length of stay

« Total charges and length of stay

e Age and total charges
a. State the null and alternative hypotheses and alpha level for each.
b. Construct a scatter diagram with regression line for each.
c. State your conclusions for each.

2. Construct a regression model for predicting total charges from length of stay for DRG
105.
a. State the null and alternative hypotheses and alpha level.

Prepare a scatter diagram with the regression line for the two variables.

What are the r and r?? What is the importance of the r and r? results?

What is the regression equation?

What are your conclusions?

Po0 o
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Table 8-A-1 Case Summaries for DRG 105, Cardiac Valve Procedures and Other
Major Cardiothoracic Procedures without Cardiac Catheterization

Gender Age LOS Charges Payor
1 Female 47 20 $91,683 Medicaid
2 Female 75 43 $93,708 Medicare
3 Female 84 7 $21,446 Medicare
4 Female 50 13 $37,797 Medicare
5 Male 77 14 $54,364 Medicare
6 Male 57 4 $17,626 Medicare
7 Male 73 4 $12,832 Medicare
8 Female 56 1 $36,153 Medicaid
9 Male 69 1 $14,907 Medicaid
10 Female 81 23 $104,148 Medicare
11 Male 21 5 $21,423 Medicaid
12 Female 37 5 $24,971 Medicaid
13 Female 69 4 $17,022 Medicare
14 Female 89 17 $50,652 Medicare
15 Male 28 35 $186,496 Medicaid
16 Male 47 6 $24,441 Medicaid
17 Male 87 11 $35,349 Medicare
18 Female 85 5 $22,155 Medicare
19 Male 56 5 $24,455 Managed Care
20 Male 45 11 $36,401 Medicaid
21 Male 82 6 $25,783 Medicare
22 Female 65 10 $37,055 Managed Care
23 Male 67 4 $19,236 Medicare
24 Male 59 23 $60,132 Other
25 Female 67 7 $35,777 Medicare
26 Male 53 4 $19,972 Managed Care
27 Male 71 7 $25,409 Medicare
28 Female 79 6 $281,140 Medicare
29 Male 63 1 $41,283 Medicaid
30 Male 53 19 $71,439 Medicaid
31 Female 75 9 $33,735 Medicare
32 Female 68 9 $37,830 Gov Mngd Care
33 Male 37 4 $22,311 Medicaid
Total N 33 33 33 33 33






CHAPTER 9

Chi-Square

KEY TERMS Contingency tables

x? test of independence
Standardized residuals
Yates correction for continuity
Phi coefficient
Contingency coefficient
Cramers V
Fisher’s exact test

x? goodness-of-fit test

McNemar test

LEARNING Upon completion of this chapter, you should be able to:

OBJECTIVES 1. Define key terms

2. Differentiate between parametric and nonparametric statistical pro-

cedures.

Outline the assumptions for nonparametric procedures.

Conduct the x? test of independence for given situations.

Explain the concept of standardized residuals.

Analyze results of the x? test of independence using standardized

residuals.

Conduct the McNemar test for given situations.

8. Use microcomputer statistical software to solve nonparametric
problems.

ISZI AR S

~

The statistical procedures discussed thus far are called parametric statistics. Parametric sta-
tistical procedures require certain assumptions about the underlying population, most partic-
ularly that the underlying population is normally distributed, that measures are at the interval
or ratio level of measurement, and that the samples are randomly drawn and independent. In
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contrast, nonparametric procedures have less restrictive assumptions. There are no assump-
tions that the underlying population distribution is normal, and the distributions may take on
any shape, so they are not limited to the bell shape of the normal distribution. Thus, non-
parametric statistical procedures are often referred to as distribution-free statistics.
Nonparametric procedures may be used to analyze data about populations that consist of
nominal, ordinal, interval, and/or ratio data. Many nonparametric tests analyze the ranks or or-
ders of the data set rather than the numerical values of the observations. Nonparametric pro-
cedures also are used when sample sizes are small (= 30) or when there are extreme values in
the data set so that the median rather than the mean is more representative of the distribution.
Also, when the shape of the distributions is either unknown or non-normal, honparametric pro-
cedures may be more powerful, reducing the chance of committing a type Il error.
Nonparametric methods may be used for testing hypotheses regarding

* relationships between variables

« relationships between variables in paired samples

« relationships between variables in two independent samples

« relationships between variables in three or more independent samples

There are, however, disadvantages associated with the use of nonparametric tests, espe-
cially when it is possible to use a corresponding parametric procedure. Since nonparamet-
ric procedures involve testing orders or ranks rather than interval/ratio data that are
continuous, some information is lost. Consequently, we have a conflict because nonpara-
metric procedures may be considered less powerful than their parametric counterparts, also
increasing the probability of committing a type Il error. It is therefore imperative that the re-
searcher select the appropriate test in view of the level of measurement used in the data col-
lection process and the sample size. Table 9-1 provides a listing of tests that may be used in
relation to the variables’ levels of measurement.

Table 9-1 Parametric/Nonparametric Procedures by Level of Measurement

Variable 1
Variable 2 Nominal Ordinal Interval/Ratio
Nominal x2 test
Fisher exact test
McNemar x? (paired)
Cramer’s V
Kappa coefficient
Ordinal Sign test Spearman rho

Wilcoxon signed ranks test (paired)
Mann-Whitney Wilcoxon test
Kruskal-Wallis test

Interval/ratio Student’s paired t test Spearman rho Pearson r
Student’s t test for two independent samples Simple regression
One-way ANOVA



Chi-Square (x?) Tests 253

The power of nonparametric tests can be improved by increasing the sample size. Less
powerful tests are less likely to detect a small difference between groups when one exists. If
it is important to the researcher to detect small differences, a parametric procedure should
be used if possible. Parametric and nonparametric procedures are compared in Table 9-2.

In this chapter, we will discuss the various forms of the chi-square test. In Chapter 10, we
review other nonparametric procedures.

Table 9-2 Comparison of Parametric and Nonparametric Procedures

Parametric Procedures Nonparametric Procedures

For Two Independent Samples or Paired Samples

Student’s t for two independent samples Fisher’s exact test
ANOVA Mann-Whitney Wilcoxon U test
x? test for two independent samples

For Three or More Independent Samples

ANOVA Kruskal-Wallis analysis of ranks
x? test for k independent samples

For Relationships Between Variables

Pearson r (bivariate) Spearman rho (bivariate)
X test
Cramer’s V
Phi coefficient
Fisher’s exact test

CHI-SQUARE (x?) TESTS

One of the more commonly used nonparametric tests is the chi-square (x?) test. The x? dis-
tribution is a positive distribution based on the number of degrees of freedom. There is more
than one type of x? test that can be used to analyze frequency data; however, all are based
on comparing actual observations with expected frequencies. With frequency data, we are
reporting the percentages or frequencies of an independent variable on the characteristic of
interest. Contingency tables are used to display frequency data. A two-by-two (2 X 2) con-
tingency table is the simplest form.

Ina 2 X 2 table, the distribution of one variable is conditionally dependent, or contingent,
upon the other. The table is made up of cells, which are specific locations in the matrix cre-
ated by the two variables under study. Each cell represents the joint frequencies for the cat-
egories on each variable. The categories that make up each variable are dichotomous and
must be mutually exclusive. The sums of the rows and columns are placed in the margins
and are thus called marginal frequencies. The total for the row and column marginals is the
cell in the lower right-hand corner (grand total); this sum is equal to N. The basic shell for
a 2 X 2 contingency table is presented in Exhibit 9-1.
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Exhibit 9-1 Shell for a 2 X 2 Contingency Table

Variable 1
Category 1  Category 2 Total
Variable 2 Category 1 a b a+b
Category 2 c d c+d
atc b+d at+tb+c+d

Source: Adapted from Principles of Epidemiology: An Introduction to Applied Epidemiol-
ogy and Biostatistics, p. 210, 1992, U.S. Department of Health and Human Services, Public
Health Service.

Contingency tables may be larger than 2 X 2. If there are more than two categories for a
given variable, the table is referred to as an R X C table (R = rows, C = columns). We will
now use hypothetical data collected to construct a two-by-two contingency table. A survey
was conducted in which data were collected on two variables: professional credential and
geographic location. “Credential” had two categories, Registered Health Information Tech-
nician (RHIT) and Registered Health Information Administrator (RHIA), and geographic
location was classified into two categories: urban/suburban and rural. The question of in-
terest was whether there is a relationship between professional credential and geographic
practice location—urban/suburban or rural. The results of the classification appear in Table
9-3. When we read a 2 X 2 contingency table or R X C table, the percentages that appear
in the cells represent the percentages of the column totals.

We will now conduct the x? test of independence on these data.

Table 9-3 Contingency Table of Professional
Credential and Geographic Location

Credential
Location RHIT RHIA Total
Urban/Suburban 30 76 106
(35.3%) (67.3%) (53.5%)
Rural 55 37 92
(64.7%) (32.7%) (46.5%)
Total 85 113 198

THE x* TEST OF INDEPENDENCE

In the x? test of independence, we can determine whether a relationship exists between two
variables in a 2 X 2 contingency table or R X C table. It is one of the most widely used sta-
tistics in health care. The question that we are trying to answer is whether the categories of
the row variable are distributed differentially across the column variables—that is, how one
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variable relates to another. If the variables are independent, a change in one variable does
not have any effect on the other. We will use the data in Table 9-3 to calculate x°.

The null hypothesis is that the two variables, credential and geographic location, are inde-
pendent of each other—in other words, that there is no relationship between the two variables.
If the null is true, we would expect that geographic location would appear in the same pro-
portions in both the ART population and the RRA population. The alternative hypothesis is
nondirectional and states that there is an association between the two variables of interest.

Ho: There is no association between credential and geographic location.
Ha: There is an association between credential and geographic location.
a = 0.05

Exhibit 9-2 summarizes the important aspects of the x? test of independence.

Exhibit 9-2 x? Test of Independence—Points to Remember

1. The ¥ statistic is used when both the independent
variable and the dependent variable are at the nom-
inal level of measurement and the categories of each
variable are mutually exclusive.

2. Data contained in the contingency table or R X C
table are frequencies, not scores.

3. Observations must be independent of each other
(except for McNemar’s x2).

4. The total number of observations (N) should be
greater than 20, and the expected frequency per cell
should be equal to or greater than 5. For large ta-
bles, 20% of the expected frequencies may be less
than 5, but should not be less than 2.

The x? test involves comparing observed frequencies with expected frequencies. In a con-
tingency table, the expected frequencies are the proportion of each category that we would ex-
pect to find in each cell by chance over the long run. In our example, there are 198 total
observations. Of these 198, 106, or 53.5%, practice in urban/suburban areas, and 92, or 46.5%,
practice in rural areas. Therefore, in the long run, we would expect these frequencies to occur
in each group. In our contingency table, there are 85 RHITs and 113 RHIAs. Therefore, we
would expect that 53.5% in each group would be practicing in urban/suburban locations—45.5
RHITs and 60.5 RHIAs. The expected frequencies are generated on this assumption. An easy
way to generate the expected frequencies is given by the following formula:

row marginal X column marginal
grand total (N)

Expected frequency =
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The next step is to subtract the expected cell frequency (E) from the observed cell fre-
quency (O). This gives the amount of deviation in each cell. The sum of the deviates for both
rows and columns is equal to zero. The deviates in each cell are then squared, (O — E)?, and
divided by the expected value for each cell, (O — E)?/E. This is similar to the numerator of
the variance, (X — X)?, where X is the expected value. But where the denominator for the
variance is divided by the degrees of freedom, n — 1, the denominator for x? is the expected
(E) frequency. Therefore, the basic statistical method for measuring variation in a data set,
the total sum of squares (TSS), is rewritten for x? as the sum of (O — E)?.

The formula for calculating the ¥ statistic is:

Xeale = 2,[(0 — E)J/E

which is defined as the sum of the squared deviations divided by the expected frequency for
each cell. To calculate the expected frequency for the first cell, RHIT X urban/suburban, we
multiply the column marginal by the row marginal (Table 9-3) and divide by the grand to-
tal: (85 X 106)/198 = 45.5. We proceed in the same manner for each cell. The expected fre-
quency for each cell is subtracted from the observed frequency, squared, and divided by the
expected frequency. The results for each cell are then summed. For the data in Table 9-4, x?
is calculated as:

chalc = 2[(0 - E)Z]/E
=5.28 + 6.08 + 3.97 + 4.58
=19.91

Table 9-4 2 Test of Independence for Credential and Geographic Location

Credential
RHIT RHIA
Location o E (0 —EP o E (0 —EP
Urban/Suburban 30 45.5 5.28 76 60.5 3.97
Rural 55 39.5 6.08 37 52.5 4.58
Total 85 85 113 113

In our example, the calculated x? is fairly large, indicating that the observed frequencies
do differ markedly from the theoretical or expected frequencies. This is verified by com-
paring the calculated x* with the critical value of x? in Appendix B, Table B-6. Ina 2 X 2
contingency table, degrees of freedom are equal to 1 (df = 1). In larger tables, the number
of degrees of freedom is determined by

df = (R — 1) X (C — 1).
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Conceptual models for degrees of freedom in contingency tables and R X C tables are
displayed in Exhibit 9-3.

Exhibit 9-3 Degrees of Freedom

Ina2 X 2 contingency table, the best estimate of the expected counts in a distribution is given
in the row and column totals. Therefore, the row and column totals are fixed. Once an ob-
served count is entered into a cell in a 2 X 2 table, no other cells are free to vary.

Column 1 Column 2 Total

Row 1 Degree of freedom Fixed Fixed
a b a+b

Row 2 Fixed Fixed Fixed
c d c+d

Total Fixed Fixed Fixed

a+c b+d at+b+c+d
(N)

We can extend this idea to R X C tables. As above, the row and column totals are fixed. Now
assume that the last column and the bottom row are never free to vary because they must con-
sist of numbers to make the totals come out right. This is illustrated in the 4 X 3 table below
(4 rows, 3 columns):

Column 1 Column 2 Column 3 Total
Row 1 Degree of freedom Degree of freedom Fixed Fixed row total
Row 2  Degree of freedom  Degree of freedom Fixed Fixed row total
Row 3  Degree of freedom  Degree of freedom Fixed Fixed row total
Row 4 Fixed Fixed Fixed Fixed row total

Total  Fixed column total  Fixed column total ~ Fixed column total ~ Fixed grand total

From Table B—6 in Appendix B, the x? critical for o = 0.05 and for one degree of free-
dom is 3.841. Since the calculated x? is greater than the critical x?, we reject the null and
conclude that the variables, credential and geographic location, are related or that they vary
together in some systematic way.

There are several points to remember when calculating x* from a contingency table or the
larger R X C table. First, the expected counts for each cell should be 5 or more. For larger
tables, 20% of the expected counts could be less than 5 but should not be less than 2. When
expected cell counts are less than 5, consider collapsing the number of categories.

The x? test of independence is an example of statistical modeling. Statistical modeling is
a process by which a model is developed to predict the relationship of one or more depen-
dent variables with an independent variable. We have already had experience with statisti-
cal modeling with linear regression. On the basis of our results in the previous example, we
would expect that for any sample drawn from a population of RHITs and RHIAs, RHIAS
would be more likely to practice in urban areas than RHITs.
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EXAMINATION OF RESIDUALS

A large x? often results in statistical significance, indicating an association between the two
variables under study. However, this does not always tell us which levels of the variable are
contributing the most to the x? statistic. By examining the x? residuals, we can determine
which cells are contributing the most to the calculated x>.

A residual is defined as the difference between the actual frequencies and the expected fre-
quencies in each cell (O — E). SPSS provides unstandardized, standardized, and adjusted
residuals for each cell. We most often use the standardized residuals, which are obtained by

. . O—-E
Standardized residual = .
VE

If the value of the obtained standardized residual is greater than +2 or less than —2 in
any cell, we can conclude that the cell in question is an important contributor to the signif-
icance of x°. In the SPSS output in Exhibit 9-4, the RHIT cells for geographic location are
contributing the most to the calculated ¥, indicating that the observed frequencies deviate
most from the expected frequencies.

YATES CORRECTION FOR CONTINUITY

Because the x test is based on comparing the calculated values of x?, which form a dis-
continuous distribution with the theoretical values of x2, which in turn forms a continuous
distribution, many recommend that the Yates continuity correction be used when the table
numbers are small and df = 1. The only difference in the x? formula is that the 0.5 is sub-
tracted from the absolute value of (O — E) in each cell.

Yates x*= > [(|0 — E| -0.5))/E

Obviously, this will reduce the size of the calculated x?, thus reducing the chance of find-
ing statistical significance and increasing the probability of making a type Il error—failing
to reject the null hypothesis when it is false. Recalculating our credential and geographic lo-
cation data using the Yates correction for continuity reduces chi-square slightly,
x? = 18.66, but it still remains statistically significant.

PHI COEFFICIENT

Chi-square tells us if there is an association between two variables, but it does not tell us the
degree of association, as does the Pearson r correlation coefficient. Also, we cannot com-
pare values of x? across samples because the calculated x? is a function of sample size. The
phi coefficient corrects for sample size and measures the degree of association between the
two variables under study. The formula for phi is

b ="Vx%n.
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Exhibit 9-4 SPSS Output for Chi-Square Procedure, Credential and Geographic Location
CREDENTIAL * GEOGRAPHIC LOCATION Crosstabulation
GEORAPHIC LOCATION
URBAN/
SUBURBAN RURAL Total
CREDENTIAL RHIT Count 30 55 85
Expected Count 455 39.5 85.0
Std. Residual -23 2.5
RHIA Count 76 37 113
Expected Count 60.5 52.5 113.0
Std. Residual 2.0 2.1
Total Count 106 92 198
Expected Count 106.0 92.0 198.0
Chi-Square Tests
Asymp. Sig. Exact Sig. Exact Sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 19.923° 1 .000
Continuity Correction® 18.659 1 .000
Likelihood Ratio 20.213 1 .000
Fisher’s Exact Test .000 .000
Linear-by-Linear
Association 19.8222 1 .000
N of Valid Cases 198
@ Computed only for 2 X 2 table
b0 cells (.0%) have expected count less than 5. The minimum expected count is 39.
Symmetric Measures
Value Approx. Sig.
Nominal by Phi —.317 .000
Nominal Cramer’s V 317 .000
Contingency Coefficient .302 .000
N of Valid Cases 198

@ Not assuming the null hypothesis.
® Using the asymptotic standard error assuming the null hypothesis.




260 CHAPTER 9 CHI-SQUARE

The phi coefficient is interpreted in the same way as the Pearson r, but the range of phi
is 0 tol. As a general rule of thumb, a value less than 0.30 may be interpreted as a trivial as-
sociation. The phi coefficient for the data in Table 94 is calculated as

b=V len
¢ ='Vv19.91/198
= 0.317.

Therefore, the relationship between credential and geographic location is not very strong.
We can see that phi provides us with more knowledge about our sample profile than x?
alone.

CONTINGENCY COEFFICIENT

The contingency coefficient (C) is an alternative to the phi coefficient when one dimension
of the contingency table is greater than two (2 X k). The contingency coefficient is calcu-
lated as

C=Vxax2+N

The value of the contingency coefficient ranges from 0 to 1.0. However, its maximum
value depends on the number of rows and columns in the table.

CRAMER’SV

The phi coefficient is a useful statistic when working with large samples where statistical
significance can be easily achieved. Phi adjusts for sample size and can be considered the
correlation coefficient for data in 2 X 2 tables. Cramer’s V is used when the table is larger
than 2 X 2.

CramersV = Vx2/N(m — 1)

where m is the smaller of the number of the rows or columns in the R X C table. The range
for Cramer’s V is 0 to 1.0, and the significance level will be the same as that for the x2.

SPSS will perform the procedures described: chi-square, Yates correction for continuity,
phi coefficient, and Cramer’s V. When categorical variables are used, they must be coded for
correct entry onto the data sheet. For the variables in Table 9-3, credential was coded as
RHIT = 1 and RHIA = 2. Geographic location was coded as urban/suburban = 1 and
rural = 2.
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v To Obtain a Chi-Square Test Using SPSS:

e From the “Analyze” menu, choose:
—Descriptive statistics
—Ccrosstabs
» Select one or more row variables and one or more column variables.
—Click “Statistics” for tests and measures of association (chi-square, phi coeffi-
cient, Cramer’s V, etc.).
—Click “Cells” for observed and expected values, percentages, and residuals.

The results of the SPSS calculations appear in Exhibit 9—4. The Pearson x? provided by
SPSS is 19.923, and the continuity correction is 18.659. (Rounding accounts for the differ-
ences between our hand-calculated results and the SPSS results.) SPSS provides the same
results for the phi coefficient and Cramer’s V. Note that SPSS reports the phi coefficient as
a negative value—an idiosyncrasy of the program, as a square root cannot be negative. The
standardized residuals indicate that the RHIT cells are contributing the most to the calcu-
lated x? statistic.

The likelihood ratio, Fisher’s exact test, and “Linear X Linear Association” appear by
default. The likelihood ratio is a goodness-of-fit statistic similar to the x* goodness of fit,
which we will discuss later in this chapter. For large sample sizes, they are identical. The ad-
vantage of the likelihood ratio is that it can be subdivided into interpretable parts that sum
to the total. The significance level of the likelihood ratio is of more interest than the actual
value of the statistic itself.

The ¥ test for linear association tells us whether the relationship between the two vari-
ables under study is a linear one. That is, the observations on both variables increase in the
same direction. Although SPSS reports the x? test for linearity by default, it is not appro-
priate for nominal-level data.

FISHER’S EXACT TEST

There may be times that we have nominal level data on two variables but the sample size is
too small, usually defined as less than or equal to 20, for the x? test of independence. In
these cases, Fisher’s exact test is a useful procedure. The purpose of Fisher’s exact test is
to examine whether two populations differ from each other in the proportion of subjects who
fall into one of two classifications of the variables. In the most common form of Fisher’s ex-
act test, there are usually two levels for each variable and the collected data are classified
into a 2 X 2 table, as in Table 9-5. However, Fisher’s exact test may be extended to larger
tables. The null and alternative hypotheses are

Hoy: There is no association between the two variables of interest.
Ha: There is an association between the two variables of interest.
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Table 9-5 Contingency Table of Smoking by

Sex

Sex
Smoking Male Female Total
Yes 7 2 9
No 3 8 11
Total 10 10 20

We calculate Fisher’s exact test by

(@ + b)l(c + d)i(a + ¢)l(b + d)!
p= Nialblcld! ’

where p is the probability of obtaining the observed frequencies that appear in the con-
tingency variable. As you might expect, calculating the p for this test with a hand-held
calculator is quite tedious. When using SPSS, Fisher’s exact test is the default of the x?
test of independence when sample sizes are less than 20 or when the expected frequen-
cies for each cell are less than 5. The assumptions for Fisher’s exact test are displayed in
Exhibit 9-5.

Exhibit 9-5 Assumptions for Fisher’s Exact Test

1. Both variables of interest are dichoto-
mous.

2. Assigned categories are mutually exclu-
sive.

3. Data contained within the table are fre-
quencies, not scores.

As an example, let’s assume that we are studying the relatedness of smoking and sex; we
will limit the sample size to 20. The null and alternative hypotheses are

Ho: There is no association between smoking and sex.
Ha: There is an association between smoking and sex.
a =0.05
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The results of our sampling appear in Table 9-5. Given these data, p would be calculated as:
(@a+ b)l(c +d)!(a + c)l(b + d)!
P= Nlalb!c!d! '
(9)!(12)!1(10)!1(20)!
~ (20)(7)(2)!(3)!(8)!
0.032

In this case, the resulting p is the actual probability of obtaining this sampling result. The
calculation of p = 0.032 is a one-tailed test result. Since our null is nondirectional (i.e., two-
tailed), we double the obtained p value of 0.032, which results in a two-tailed p value of
0.064. Since p > 0 .05, we fail to reject the null and conclude that the two variables, smok-
ing and sex, are independent.

To calculate Fisher’s exact test using SPSS, we must first code the dichotomous variables
to be used in the analysis. The sex variable will be coded as male = 1 and female = 2. The
smoking variable will be coded as smoking = 1 and no smoking = 2. Fisher’s exact test is
provided by default. The SPSS results for Fisher’s exact test appear in Exhibit 9-6. SPSS
provides both the one- and two-tailed p values. The two-tailed p value is 0.070. SPSS ad-
justs the p value because the row margin totals are not equal; that is, (a + b) # (c + d).

Exhibit 9-6 SPSS Output for Fisher’s Exact Test

SMOKING * SEX Crosstabulation

SEX
MALE FEMALE Total
SMOKING SMOKING Count 7 2 9
Expected Count 4.5 45 9.0
Std. Residual 1.2 -1.2
NO SMOKING  Count 3 8 11
Expected Count 5.5 55 11.0
Std. Residual -11 1.1
Total Count 10 10 20

Expected Count  10.0 10.0 20.0

Chi-Square Tests
Asymp. Sig.  Exact Sig.  Exact Sig.
Value df (2-sided) (2-sided)  (1-sided)

Pearson Chi-Square 5.051° 1 .025

Continuity Correction® 3232 1 .072

Likelihood Ratio 5.300 1 .021

Fisher’s Exact Test .070 .035
Linear-by-Linear Association 4.798 1 .028

N of Valid Cases 20

@ Computed only for a 2x2 table
b 2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.50.
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x> GOODNESS OF FIT

In the x? goodness-of-fit test, we are also comparing actual frequencies with expected or
theoretical frequencies in a distribution. However, the expected counts instead of being
based on the collected data, as in Table 9-3, are based on our knowledge of the population
under study. For example, if 75% of the physicians practicing in our hospital are men and
25% are women, we will expect to draw a sample composed of 75% men and 25% women.
We know that the drawn sample will not precisely match the proportions in the population,
but we want to be assured that the sample proportions are not significantly different from
the underlying population proportions. In this procedure, the goal is to determine how well
the observed counts in our sample fit the expected counts based on the model—that is, how
well the observed count matches a theoretical frequency distribution.

As an example, a researcher received 355 responses to a survey that was mailed to direc-
tors of health information management (HIM) centers in acute care facilities across the
United States. A x? goodness-of-fit test was conducted to ensure that the respondent profile
matched that of the distribution of practitioners in the general HIM population. A variable
used to compare the respondent profile to the general population was the hospital bed size
in which professionals practiced. The obtained frequency distribution of HIM respondents
is compared to the respondent profile in Table 9-6.

Table 9-6 Hypothetical HIM Population Distribution and
Respondent Profile by Hospital Size

Hospital Size  HIM Population % 1990 Respondent %

<100 beds 20.1 21.7
101-300 beds 38.9 4.4
301-500 beds 21.9 22.3
501+ beds 19.0 14.6

The null hypothesis, based on the actual HIM frequency distribution, is

Ho: p1 = 0.201, p, = 0.389, p; = 0.219, p, = 0.190
Ha: At least one of the hypothesized proportions is different from the expected.

The expected frequencies are generated on the basis of the actual frequency distribution
of the characteristic of interest in the general population. In the example, 20.1% of the HIM
professionals practice in hospitals with fewer than 100 beds; therefore, the expected fre-
quency count for the actual respondents for this category is 71.4 (355 X 0.201 = 71.4).
Table 9-7 displays the observed and expected frequencies. If the calculated x? is small, there
is close agreement between the observed and expected frequencies. As the discrepancy be-
tween the observed and expected frequencies increases, the calculated x? increases, and the
more likely we are to reject the null hypothesis and conclude that the population proportions
are significantly different from the expected population proportions.
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Table 9-7 Observed (O) and Expected (E) Frequencies of Respondents by Hospital Bed Size
(Hypothetical Data)

Hospital Bed Size o E (O-E) (O -EF (O — EfIE
<100 beds 77 71.4 5.6 31.36 0.44
101-300 beds 147 138.2 8.8 77.4 0.56
301-500 beds 79 77.8 1.2 1.44 0.02
501+ beds 52 67.5 -15.5 240.25 3.56
Total 355 4.58

In this example, we are comparing observed frequencies with the expected frequencies
across four categories (rows) on the variable hospital bed size. In the one-variable case, de-
grees of freedom are based on the number of categories (k) and are equal to the number of
categories minus 1 (i.e., k — 1). In this example, k — 1 = 3, and for 3 df, the critical value
of x%, a = 0.05, is 7.82. Since the calculated x? does not equal or exceed the critical value
of x2, we fail to reject the null hypothesis and conclude that the respondent profile “fits” the
population profile. Even though we can generalize our results to our population of interest,
it is important to note that the category “501+ beds” contributes the most to the x? statis-
tic. It is this category that deviates the most from the expected frequencies.

The SPSS calculations for the data in Table 9-7 appear in Exhibit 9-7. SPSS reports the
x? as 4.575, p = 0.206. SPSS requires that the expected frequencies for each category be
entered into the dialog box. The expected frequencies may be specified as proportions, per-
centages, or actual values. The assumptions for the x? goodness-of-fit test are summarized
in Exhibit 9-8.

Exhibit 9—7 SPSS Output for Chi-Square Goodness of Fit

Hospital Size
Observed  Expected
N N Residual
6-100 Beds 77 714 5.6
101-300 Beds 147 138.2 8.8
301-500 Beds 79 77.8 1.2
501+ Beds 52 67.5 —-155
Total 355
Test Statistics
Hospital Size
Chi-Square® 4576
df 3
Asymp. Sig. 0.206
20 cells (0.0%) have expected frequencies less than 5. The mini-
mum expected cell frequency is 67.5.
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Exhibit 9-8 Assumptions for x> Goodness of Fit

1. Select a criterion upon which to compare the selected sample with the underlying popula-
tion, such as sex, level of education, or certification.

2. Select the null and alternative hypotheses and the significance level for rejection of the null.

3. The criterion variable must have two or more categories, and the categories must be mu-
tually exclusive and exhaustive.

4. The data contained within the cells are frequencies, not scores.

5. Determine the expected or theoretical frequencies under the assumption that the null hy-
pothesis is true. The expected frequencies are obtained by the researcher’s knowledge of
the target population. Frequencies must be specified in advance.

6. If categories are dichotomous, the expected frequencies for each cell should be at least 5.
If there are more than two categories, no more than 20% of the cells should have frequen-
cies less than 5. If this requirement cannot be met, consider collapsing the categories.

7. Compare the observed frequencies to the expected frequencies for each cell.

8. If the aggregate discrepancy (x2calc) between the observed and expected frequencies is too
great to attribute to chance at the selected significance level, reject the null.

v To Obtain a Chi-Square Test Using SPSS:

e From the “Analyze” menu, choose:
—Nonparametric
—chi-square
 Select one or more test variables. Each variable produces a separate test.
* Click “Options” for descriptive statistics, etc.

x> TEST FOR PAIRED DATA—MCcNEMAR TEST

When we previously discussed identifying differences between paired data, we reviewed the
paired t test. In the paired t test, the dependent variable is continuous and the independent
variable is categorical. The McNemar test is used when we have paired data and the vari-
able under study is nominal. The McNemar test is a modified x> with one degree of free-
dom. If the resultant x? is significant, the conclusion is that there was a change from the
pretest condition to the posttest condition, or that there is an association between the treat-
ment and the effect. Exhibit 9-9 outlines the assumptions for the McNemar test.

Exhibit 9-9 Assumptions for McNemar Test

1. Observations are dichotomous.

2. Dichotomous measures are paired observations of the same subjects or matched
pairs.

3. Dichotomous categories are mutually exclusive.

4. Data that are contained in the cells of the table are the number of pairs.
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As an example, we are interested in comparing student attitudes before enrollment in a
professional HIM baccalaureate degree program and after graduation. Fifty students were
asked to complete an attitude survey prior to formal program enrollment and one week post-
graduation. Responses were recorded as either positive or negative—a dichotomous re-
sponse. The subjects (students) are serving as their own controls, as it is their pre-enrollment
and post-graduation scores that are being compared.

For the McNemar test, we first prepare a 2 X 2 contingency table. The pre-enrollment at-
titudes appear on the left, and post-graduation attitudes appear across the top (Table 9-8).

Table 9-8 Pre-Enrollment and Post-Graduation
Attitudes of HIM Students

Post-Graduation

Pre-Enrollment Positive Negative Total
Positive 38 5 43

a b a+b
Negative 2 5 7

c d c+d
Total 40 10 50

a-+c b+d a+b+c+d

Each cell in the table represents one of the four following combinations:

a = positive before and after—no change
b = change from positive to negative
¢ = change from negative to positive
d = negative before and after—no change

Only the b and c cells are used in the analysis because they represent change—if it oc-
curred. Cells a and d do not contribute anything to the analysis, since the cell frequencies
remain the same before enrollment in the baccalaureate program and after graduation. The
null and alternative hypotheses are

Ho: pre-enrollment attitude = post-graduation attitude.
Ha: pre-enrollment attitude # post-graduation attitude.

The formula for the McNemar x? is
McNemar x2 = (b —c| — 1)%(b + c)
=(I5-2] — 1% +2)
= 0.57.
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The critical value for Xz, o = 0.05, with one degree of freedom, is 3.841. Since the cal-
culated x? does not equal or exceed the critical value, the McNemar test result is not statis-
tically significant. So even though there were observed changes in attitudes, in that three
students changed their attitudes from positive to negative, the changes are not statistically
significant. But even though these results are not statistically significant, it would be worth-
while to investigate the reasons for change in student attitudes.

The SPSS calculations for the McNemar test appear in Exhibit 9-10. The two paired vari-
ables for analysis are the pre-enrollment attitudes and the post-graduation attitudes. Positive
attitudes were coded as “1,” and negative attitudes were coded as “2.” SPSS does not dis-
play the actual McNemar statistic, and it uses the binomial distribution (see Chapter 10) to
calculate the level of significance (p = 0.453).

Exhibit 9-10 SPSS Output for McNemar Test

Pre-Enrollment * Post-Enrollment Crosstabulation
Post-Enrollment

Positive Negative Total

Pre-Enrollment  positive 38 5 43
negative 2 5 7
Total 40 10 50
Chi-Square Tests
Exact Sig.
Value (2-sided)
McNemar Test 0.453%

N of Valid Cases 50

2 Binomial distribution used.

v To Obtain McNemar’s Test Using SPSS:

» From the “Analyze” menu, choose:
—(descriptive statistics
—scrosstabs
» Select one or more row variables and one or more column variables.
—Click “statistics for McNemar test”

CONCLUSION

In this chapter, we were introduced to the various forms of the chi-square test, which is a non-
parametric procedure. Nonparametric procedures are less restrictive than their parametric
counterparts. Nonparametric procedures do not make assumptions regarding the underlying
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population distribution; nor do they require large sample sizes. Nonparametric methods may
also be used for analyzing frequencies for nominal- and ordinal-level data.

We can use the chi-square test to measure the relationship between two variables. This is
called the chi-square test of independence. Other frequency measures of association based
on chi-square include Cramer’s'V, the phi coefficient, and Fisher’s exact test. These tests use
frequencies rather than the values of observations in the calculations.

If we are interested in making comparisons between two independent samples, the forms
of chi-square to be used are Fisher’s exact test and the chi-square test for two independent
samples. If we are interested in making comparisons between paired samples, we can use
McNemar’s chi-square.
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Appendix 9-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
2. Describe the major differences between parametric and nonparametric procedures.

3. Describe the circumstances under which it would be appropriate to use the chi-square
test.

4. What questions would a researcher be attempting to answer when using the chi-square
goodness-of-fit test?

MULTIPLE CHOICE

1. We use the chi-square test to test for differences between:
. means
. variances
. frequencies
. proportions
. candd
all of the above

DO O O T o

2. You want to compare the number of male and female patients discharged by service at
Critical Care Hospital. There are 10 services. For the chi-square test, the number of de-
grees of freedom is:

a. 1

b. 2

c.9

d. 10

270



Multiple Choice

3. In the chi-square test, if the result is not significant, the:
a. observed frequencies are similar to the expected frequencies
b. observed frequencies do not match the expected frequencies
c. expected frequencies are greater than the observed frequencies
d. observed frequencies are greater than the expected frequencies

For questions 4 through 9, refer to the following R X C table:

Phys A Phys B Phys C Total
Male 60
Female 28 42 140
Total 40 60 100 200

4. The observed number of male patients discharged by physician C is:
a. 10
b. 20
c. 30
d. not enough information provided

5. The expected number of male patients discharged by physician B is:
a. 10
b. 18
c. 20
d. not enough information provided

6. The observed number of males discharged by physician A is:
a. 10
b. 20
c. 30
d. not enough information provided

7. The expected number of females discharged by physician A is:
a. 20
b. 28
c. 30
d. not enough information provided

8. The number of degrees of freedom for this problem is equal to:
a. 2
b. 4
c. 6
d. 199
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9. For the above problem, x?..ic is equal to 16.87; x2.i is equal to 5.99. We therefore:
a. reject the null hypothesis

b. fail to reject the null hypothesis

c. conclude that these physicians have the same number of discharges

d. conclude that these physicians prefer to treat men over women

10. The phi coefficient is used to measure the:

a. correlation of two ordered variables

b. correlation of interval-level variables

c. strength of the association between variables in a 2 X 2 table
d. all of the above

PROBLEMS

1. You are assisting Dr. Hartman in studying the number of deaths due to acute myocardial

infarctions (AMIs). Dr. Hartman is particularly interested in knowing if more men than
women died from AMIs. To answer this question, you review discharges by sex for DRG
123, Circulatory Disorders with AMI, Expired. Use the nonparametric procedure for chi-
square to determine if there is an association between sex and deaths due to AMI at Crit-
ical Care Hospital. A frequency distribution of discharges by sex and age from DRG 123
appears in Table 9-A-1.

a. State the null and alternative hypotheses.

b. State the alpha level.

c. What is the result of the chi-square test?

d. State your conclusions.

Table 9-A-1 Frequency Distribution of Discharges by Age
and Gender, DRG 123 (SPSS Output)

Age * Gender Crosstabulation

Count
Gender
FEMALE MALE Total
Age 49 0 1 1
50 0 1 1
61 0 1 1
66 0 1 1
75 1 0 1
76 0 1 1
77 0 1 1
88 1 0 1
88 0 1 1
Total 2 7 9
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2. Using the same information in Table 9-A-1, use the chi-square test to determine if there
is an association between age and sex for discharges from DRG 123. Calculate the phi
coefficient.

a. State the null and alternative hypotheses.

State the alpha level.

What is the result of the chi-square test?

What does the phi coefficient indicate?

State your conclusions.

o 0T






CHAPTER 10

Nonparametric Methods

KEY TERMS  Spearman rho
Sign test
Wilcoxon signed ranks test
Mann-Whitney Wilcoxon test
Kruskal-Wallis test

LEARNING At the conclusion of this chapter, you should be able to:

OBJECTIVES 1 Define key terms.

2. Conduct the following tests for given situations: Spearman rho,
Sign test, Wilcoxon signed ranks test, Mann-Whitney Wilcoxon
test, and the Kruskal-Wallis test.

3. Distinguish between the Pearson r correlation coefficient and the
Spearman rho correlation coefficient.

4. Use microcomputer statistical software to solve nonparametric
problems.

In Chapter 9, we discussed the various forms of chi square and their respective applications.
In this chapter, we will discuss some of the other commonly used nonparametric procedures.
We will first discuss the Spearman rho rank order correlation coefficient. This test is the
nonparametric counterpart of the Pearson r correlation coefficient.

THE SPEARMAN RHO RANK ORDER CORRELATION COEFFICIENT
An alternative to the Pearson r correlation coefficient that we previously discussed is
the Spearman rho rank order correlation coefficient. The Spearman rho is used when at

least one of the two variables under study falls on the ordinal scale of measurement. The
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correlation coefficient obtained from the Spearman rho procedure is the result of the rank-
ings of the observations, not the actual values of the observations.

To calculate the Spearman rho, we rank the observations on each variable from lowest to
highest. Tied observations are assigned the average of the ranks. If two observations are tied
for second position, they actually occupy positions 2 and 3, and both are assigned the aver-
age rank of (2 + 3)/2, or 2.5. For example, consider the following data set:

Observed score 2 5 5 5 7
Rank 1 2 3 4 5
The total number of possible ranks is five, but three subjects have the same observation
of “5,” and it is incorrect to assign them different ranks. To obtain the average rank, we sum
the ranks 2, 3, and 4 and divide by 3 to obtain the average rank of 3. The assigned ranks
become:
Observed score 2 5 5 5 7
Rank 1 3 3 3 5
Once the ranks have been assigned, the differences between the ranks on the X and Y vari-

ables are obtained, summed, and squared (Table 10-1). The resulting values are substituted
into the following formula:

o = 1 — [(6 2 DZ)/n(nZ - 1)]

The range for the Spearman rho is the same as that for the Pearson r, —1.0 to +1.0, and
has the same interpretation.

As an example, let’s consider a hypothetical case of eight subjects who smoke. The R;
column (Table 10-1) indicates the rank for each patient in terms of number of cigarettes

Table 10-1 Patient Ranks by Smoking and Severity of lliness

Number of Cigarettes Smoked Severity of lliness Difference in Ranks

Patient R, R D(Ry — R») D?
1 1 2 -1 1

2 2 4 -2 4

3 3 3 0 0

4 4 1 3 9

5 5 7 -2 4

6 6 5 1 1

7 7 8 -1 1

8 8 6 2 4
Total 0 24
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smoked, from lowest (rank = 1) to highest (rank = 8). The R, column indicates the rank for
each patient in terms of severity of illness, from least severe (rank = 1) to most severe
(rank = 8). To complete the table, R, is subtracted from Ry, and the difference is squared.
The null and alternative hypotheses are

Ho: There is no relationship between number of cigarettes smoked and severity of
illness.

Ha: There is a relationship between number of cigarettes smoked and severity of
illness.

o = 0.05

Note that the D column sums to zero. This column does not need to be summed, but it
does serve as a check on our calculations. The difference between the ranks column should
always sum to zero. Substituting our obtained values into the formula:

Mo = 1 — [(6 2 D?)/n(n® — 1)]
= 1 — [6(24)]/[8(64 — 1)]
—0.71

To test the significance of rho, we use the Pearson r table (Appendix B, Table B-5), where
df = n — 2. However, when the sample size is less than 10, we must use the t distribution
where df = n — 2 (Appendix B, Table B-2). The formula for calculating t is

t=rhoVn — 2/V1 — rho?

substituting in the formula

t=071V6/V1 - 0.712

= 1.74/0.7
= 2.49.

For six degrees of freedom, o = 0.05, t.,;; = 2.447; since the calculated t, 2.49, is greater
than the critical t, it falls in the region of rejection. We therefore reject the null hypothesis
and conclude that there is a statistically significant positive relationship between the num-
ber of cigarettes smoked and severity of illness.

The Spearman rho can also be calculated when one of the variables falls on the in-
terval scale of measurement, but it is first necessary to convert the observations to
ranks. As an example, we will calculate the Spearman rho for a data set in which vari-
able X falls on the ordinal scale of measurement and variable Y falls on the interval
scale, as in Table 10-2. Variable Y must be converted to ranks. The null and alternative
hypotheses are
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Table 10-2 Spearman Rho for Ordinal and Interval Level Data

X Y Difference in Ranks
Patient R, R, S(R1 — R») D?

1 8.5 135 6.5 2 4

2 8.5 120 9 -0.5 0.25

3 6 140 5 1 1

4 6 130 8 -2 4

5 6 135 6.5 -0.5 0.25

6 4 145 4 0 0

7 3 150 25 0.5 0.25

8 1.5 150 2.5 -1 1

9 1.5 160 1 0.5 0.25
Total 0 11

Ho: There is no relationship between variables X and Y.
Ha: There is a relationship between variables X and Y.
a = 0.05

The calculations for the Spearman rho are

Mo = 1 — [(6 3 D?)/n(n® — 1)]
= 1 — [6(11))/[9(81 — 1)]
— 001

Since we have a sample size that is less than 10, we evaluate the significance of rho by
using t:

t=rhoVn — 2/\V1 — rho?
substituting in the formula

t=091V7/V1 - 0912

= 2.41/0.41
= 5.88.

The critical value of t, for seven degrees of freedom, « = 0.05, is 2.365. Since the calcu-
lated t is greater than the critical t, it falls in the region of rejection. We reject the null hy-
pothesis and conclude that there is a strong positive relationship between variables X and Y.
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v To Obtain the Spearman Rho Using SPSS:

e From the “Analyze” menu, choose:
—Correlate
—Bivariate
 Select two numeric variables.
—Select options.
—Click “Spearman rho.”

The SPSS output for the Spearman rho appears in Exhibit 10-1. SPSS does not require
that interval-level data be recoded for the Spearman rho.

Exhibit 10-1 SPSS Output for Spearman Rho

Spearman’s rho X Correlation
Coefficient 1.000 —.905*
Sig. (2-tailed) . .001
N 9 9

Y Correlation

Coefficient —.905* 1.000
Sig. (2-tailed) 0.001 .
N 9 9

* Correlation is significant at the 0.01 level (2-tailed).

LOCATION TESTS FOR SINGLE AND PAIRED SAMPLES

The sign test and the Wilcoxon signed ranks test are used for analyzing data from single
data sets or data collected in pairs. The results of these tests are inferences concerned with
the median of a population (M) and the median (Mp) of the population differences for paired
samples. These are examples of location tests. In a location test, we are concerned with the
value of a measure of central tendency, or central location, and its associated confidence in-
tervals. The parametric counterpart of these tests is the paired t test.

Sign Test

The sign test is used to test hypotheses about the location of a population distribution. The
test is often used when evaluating data in the form of matched pairs—that is, “before” and
“after” data such as pretests and posttests that are in the form of a single sample. In this case,
the test is for a median difference of zero between the matched pairs rather than a mean dif-
ference of zero, as in the paired sample t test. The sign test does not require that the under-
lying population be normally distributed. In the sign test, the null hypothesis is stated as:

HO: M = MO
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As you recall, the median is the value that divides the area under the curve in half. In a
normal distribution, the mean and median are equal. If the null hypothesis is true, My is the
central value—one-half of the observations in the sample should be larger than Mg, and one-
half should be smaller. To evaluate the null, the sign statistic, S, is defined as

S = number of plus signs among the differences X; — Mg, Xo — Mg .. . X, — M,.

The null distribution of S is the binomial distribution, with n and p = 0.5.
p(S =% = (3)(0.57(0.5)"*

The binomial distribution describes the possible number of times that an event will occur
in a given number of trials. When using the binomial distribution, the variables of interest
are at the nominal level of measurement and are dichotomous. We use the binomial distri-
bution when we are interested in the frequency of occurrence of an event—for example, how
many patients survived/did not survive a particular cancer treatment.

In using the binomial distribution, there must only be two possible mutually exclusive
outcomes, such as survived/did not survive, yes/no, or success/failure. Each observation
must be independent, and the outcome of one trial must not influence another. The two pos-
sible outcomes are designated as

p = probability that a successful event (x) will occur in a single trial.

1 — p = probability that a successful event (x) will not occur in a single trial.

To determine the value of p or 1 — p, it is necessary to know the number of ways in which
success or failure can occur in a specified number of trials (n). This is obtained from the bi-
nomial coefficient (%), where n equals the number of trials and x is the number of times a
successful outcome will occur.

As an example, let’s consider the probability of drawing a delinquent medical record from
the incomplete file. We know that 10% of the records are delinquent at any one time. If we
randomly select five records from the incomplete file, what is the probability that one will
be delinquent? The binomial coefficient is (3); that is, the number of possible combina-
tions of an event where five records are randomly drawn with the probability of one delin-
quent record. This is illustrated as

DNNNN
NDNNN
NNDNN
NNNDN
NNNND

(where D = delinquent record and N = nondelinquent record)
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The formula for determining the probability of a designated number of successes p(x) in
n trials equals the number of possible combinations of the event multiplied by the probabil-
ity of success, 10%, and failure.

p() = (P —p)"
The probability of drawing one delinquent record in five trials is:

p(x) = (9)(0.10)*(1 — 0.10°"*
= 5(0.10)(0.90)*
= 5(0.10)(0.6561)
= 0.32805, or 0.33

Thus, the probability that one delinquent record will be drawn in five trials is 0.33,
or 33%.

For sample sizes greater than 20, we can use the normal approximation to the binomial
distribution with the test statistic z:

_S-05n*05
0.5Vn

where +0.5 is a continuity correction to improve the normal approximation to the binomial
distribution. If the calculated sign statistic, S, is less than 0.5n, +0.5 is used in the above
formula; if S is greater than 0.5n, —0.5 is used. When calculating S, any difference between
Xi and X, that is equal to zero is called zero. As long as zero differences are few, ignore
them, and reduce the size of n accordingly.

Under the previously stated null hypothesis, there are two one-sided alternatives and one
two-sided:

z

Hait M > M,
Hat M < M,
Hat M # M,

In the positive-sided alternative, we expect that the number of observations greater than
Mo will be large and that the calculated S will be large. Conversely, in the negative-sided al-
ternative, we expect that the number of observations less than My will be large and that the
calculated S will be small.

We will now look at a hypothetical example for calculating the S statistic. In a health in-
formation management (HIM) coding class, the students have been reluctant to use encod-
ing software to code ICD-9-CM diagnoses and procedures. The instructor believes that if
the students used the computer program just once they would have a more positive attitude
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toward using it. To test this hypothesis, the instructor administers a pre- and postuse attitude
assessment on the use of the computerized software. The assessment consisted of 20 ques-
tions, all stated in positive terms regarding computerized encoders. The null and alternative
hypotheses are

Ho: M - Mo.
Ha: M > M.
To test the hypothesis in the single-sample sign test, the average preuse assessment score
for each item is subtracted from the average postuse assessment score for each item. The dif-

ferences are recorded as either plus (greater posttest score) or minus (greater pretest score).
The average difference for each item appears in Table 10-3.

Table 10-3 Pretest and Posttest Coding Results, Sign Test

Average Pretest Posttest Average Pretest Posttest
Item Difference Sign Item Difference Sign
1 +0.3 + 11 -0.3 -
2 +0.1 + 12 +0.5 +
3 -0.4 - 13 +0.1 +
4 +0.2 + 14 +0.2 +
5 +0.5 + 15 -0.5 -
6 +0.3 + 16 +0.4 +
7 -0.2 - 17 +0.1 +
8 +0.6 + 18 +0.3 +
9 +0.4 + 19 +0.2 +
10 -0.1 - 20 +0.1 +

Our calculations result in S = 15; that is, 15 plus signs. Conclusions for nonparametric
tests are often reported in terms of the p value, and we use the binomial table, where
p = 0.50, to determine the value of p when n = 20 (Appendix B, Table B-7). For a given n,
the entry in the column labeled “p” is the left-tail cumulative probability for the corre-
sponding number in the column labeled “Left S,” and this same p value is the right-tail prob-
ability for the corresponding number in the column labeled “Right S.” A partial table for the
binomial distribution for n = 20 is presented in Exhibit 10-2.

For our example, n = 20, the Pr (S = 15) = 0.0207. Thus, we reject the null and conclude
that students had a more positive attitude regarding computerized encoders after actually us-
ing the computer programs. Using the same data, we can also calculate the corresponding
large sample approximation (the continuity correction, —0.5, is used because S > 1/2 n):
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Exhibit 10-2 Partial Binomial Distribution,

= 0.50

n Left S p Right S

20 0 0.0000 20

1 0.0000 19

2 0.0002 18

3 0.0013 17

4 0.0059 16

5 0.0207 15

6 0.0577 14

7 0.1316 13

8 0.2517 12

9 0.4119 11

10 0.5881 10

Source: Reprinted from National Bureau of

Standards.

_S—-05n=*05
0.5Vn

= (15 — 10 — 0.5)/0.5\V20

= 4.5/2.24

=201

The corresponding p value for z = 2.01 is 0.0222 (Appendix B, Table B-1). The p value
can also be calculated using the binomial test available on SPSS. From the “Analyze” menu,
select “Nonparametric” and then select “Binomial.” The p value must be set at 0.50 to cor-
respond to the sign test. The results of the SPSS output appear in Exhibit 10-3. Note that
the p value for the SPSS binomial test is 0.041—this is for a two-tailed test.

Exhibit 10-3 SPSS Output for the Sign Test

Binomial Test

PRE-, POSTTEST
DIFFERENCES

Group1l Group2 Total

Category Positive  Negative

N 15 5 20
Observed Prop. .75 .25 1.00
Test Prop. .50

Exact Sig. (2-tailed) .041
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Dividing the p value in half, we obtain p = 0.0205, which is very close to the p value for
the binomial distribution that appears in Exhibit 10-2.

The Wilcoxon Signed Ranks Test

In the sign test, the only information we used to calculate S was the signs of the differences
between the pre- and posttest scores. Information regarding the size of the differences be-
tween the pre- and posttest scores was not considered. As we shall see, the Wilcoxon signed
ranks test uses more information in its calculations and thus is a more powerful test. The
Wilcoxon signed ranks test assumes that the observations are symmetric about the median
M. If the underlying population is extremely nonsymmetric, the Wilcoxon signed ranks test
should not be used. The assumptions for the Wilcoxon signed ranks test are summarized in
Exhibit 10-4.

Exhibit 10-4 Assumptions for the Wilcoxon Signed Ranks Test

1. Data are paired observations from a single random sample either con-

structed as matched pairs or using subjects as controls.

Data are continuous and at least at the ordinal level of measurement.

3. There is symmetry of the difference scores about the true median for
the population.

N

In the sign test discussed previously, we looked at the average differences for each item.
We will now consider the differences in pre- and posttest scores for 15 students in the class.
Here we will view the pre- and posttest scores as matched pairs—similar to the t test for
matched pairs. What we want to know is whether there is a significant difference in the pre-
and posttest medians. In the Wilcoxon signed ranks test, we calculate T where T+ is the sum
of the positive ranks and T— is the sum of the negative ranks. To calculate T, we take the
absolute values of the differences between the pre- and posttest scores, keeping track of the
original positive and negative signs, and assign ranks from lowest to highest. In the exam-
ple, the rankings will range from 1 to 15. If there are observations that are tied, we assign
the average or the midpoint of the ranks they would have if they were not tied. The absolute
values of the differences between pre- and posttest scores and their corresponding ranks ap-
pear in Table 10-4. The null and alternative hypotheses are the same as for the sign test:

Ho: M - Mo
Has: M > Mg
Under the null hypothesis, we would expect that the sum of the positive rankings, T+,

would be similar to the sum of T—. In our example, the sum of T+ equals 91, and the sum
of T— equals 29—a wide difference in values. To determine the significance of T, we use
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Table 10-4 The Sign Test of Pretest and Posttest Coding Results

Pretest  Posttest
Coder  Score Score  Difference D  Sign ID|  Rank

1 13 20 +7 + 7 115
2 15 16 +1 + 1 1
3 15 11 —4 - 4 5.5
4 12 16 +4 + 4 5.5
5 10 15 +5 + 5 7
6 8 11 +3 + 3 3.5
7 12 10 -2 - 2 2
8 9 15 +6 + 6 9
9 9 18 +9 + 9 14
10 5 12 +7 + 7 115
11 10 20 +10 + 10 15
12 7 1 -6 - 6 9
13 5 13 +8 + 8 13
14 16 10 -6 - 6 9
15 10 7 -3 - 3 3.5
S=10

ST, =91 ST_=29

the Wilcoxon signed ranks distribution of T. For T+ = 91, n = 15, we obtain a p value of
0.042. We therefore reject the null and conclude that M > 0; thus, students’ use of comput-
erized encoders did have a positive impact on attitude.

Tables for the critical values of T are often not large enough for sample sizes greater than
15. When the sample size is greater than 15, the normal approximation must be used to cal-
culate T, where

B T—n(n+ 1)/4
27 Vh(h - D@ + D24’

where T is the sum of the positive or negative ranks, depending on the proposed alternative
hypotheses, and n is the number of positive and negative ranks, excluding ties.

We can use SPSS to calculate the sign test and the Wilcoxon signed ranks test (Exhibit
10-5). For comparison purposes, the Student’s t for matched pairs is also calculated (Exhibit
10-6). The p value for the Wilcoxon signed ranks test is given for the normal approxima-
tion of T. Since the p value is for a two-tailed test, we divide the given p value of 0.078 by
2, and the significance level becomes 0.039. Also, the p value for the Student’s t test is for
the two-sided alternative. For the one-sided alternative, where t = 1.818 and df = 14, the p
value is 0.0455 (0.091/2).
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Exhibit 10-5 SPSS Output for Wilcoxon Signed Ranks Test

Ranks
POSTTEST-PRETEST
Negative Positive
Ranks Ranks Ties Total
N 58 10P 0° 15
Mean Rank 5.80 9.10
Sum of Ranks 29.00 91.00

3 POSTTEST < PRETEST
b POSTTEST > PRETEST
¢ POSTTEST = PRETEST

Test Statistics?
POSTTEST-PRETEST

z —01.763"
Asymp. Sig. (2-tailed) .078

2 Based on negative ranks.
b Wilcoxon Signed Ranks Test.

Exhibit 10-6 SPSS Output for Student’s t Test for Matched Pairs

Paired Samples Statistics

Std. Std. Error
Mean N Deviation Mean
Pair 1 PRETEST 10.40
00 15 3.43927 .88802
POSTTEST 13.00
00 15 5.04268 1.30201
Pair 1
PRETEST-
POSTTEST
Paired Differences Mean —2.60000
Std. Deviation 5.53947
Std. Error Mean 1.43028
95% Confidence Lower —5.66766
Interval of the Upper 46766
Difference
t —1.818
df 14

Sig. (2-tailed) .091
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v To Obtain Wilcoxon Signed Ranks Test Using SPSS:

* From the menus, choose:
—Statistics
—Nonparametric
—2 related samples
* Select one or more pairs of variables.

MANN-WHITNEY WILCOXON TEST

When two independent samples violate the assumptions associated with the independent
samples t test, the Mann-Whitney Wilcoxon test, also known as the Mann-Whitney U test
(U) and the Wilcoxon rank sum test (T or W), may be used in its place. In this test, we
are interested in comparing the medians of two independent samples, X and Y. The Mann-
Whitney Wilcoxon test is based on the ranks of observations, with the two independent
samples treated as one. Because the test takes into account the rankings of measurements in
each sample, it uses more information than the previously discussed sign test.
For the Mann-Whitney Wilcoxon test, the null hypothesis is

Ho: MX = My
and the alternative hypotheses are

Hro: My > My
He: My < My
Ha: My # My

The Mann-Whitney Wilcoxon statistic provides a measurement of the difference between
the ranked observations of the two samples and provides evidence of the difference of the
medians between the two populations. If the null was true, we would expect the average of
the two summed ranks to be about the same. The total possible sum or all the ranks is de-
termined by N(N + 1)/2. In the example in Table 10-5, the sum of all the ranks is equal to
300; therefore, we would expect the ranks for each group to average 150 (300/2). If the av-
erage rank for hospital sample X is greater than the average rank for hospital sample Y, most
of the physician satisfaction scores for hospital sample X will be greater than the physician
satisfaction scores from sample Y, and vice versa. The procedure for calculating the Mann-
Whitney Wilcoxon statistic is outlined in Exhibit 10-7.

Let’s consider an example. The director of HIM distributes a satisfaction survey to 12
physicians in the facility (hospital X) who are consistent users of HIM services. The same
survey is distributed to 12 physicians at another hospital (hospital Y) within the corporate
group. The lowest score that may be obtained on the instrument is 1, and the highest score
is 20. The director wants to determine if there is a difference in the median levels of satis-
faction between the two hospitals. The null and alternative hypotheses are:

HO: MX = MY
Ha: My # My
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Table 10-5 Calculation of Mann-Whitney Wilcoxon Statistic
for Physician Satisfaction Level in Hospital X and Hospital Y

Hospital X Hospital Y

Doctor Score Ranky Doctor Score Ranky

1 7 7 13 15 17.5
2 6 5.5 14 14 15
3 4 25 15 15 17.5
4 11 10.5 16 16 21
5 16 21 17 16 21
6 4 2.5 18 16 21
7 10 9 19 14 15
8 6 5.5 20 12 12
9 9 8 21 14 15
10 3 1 22 17 24
11 13 13 23 16 21
12 5 4 24 11 10.5
3 Rx = 89.5 > Ry =210.5
Mean Ry =7.5 Mean Ry =7.5
T=289.5

Exhibit 10-7 Calculation of Mann-Whitney Wilcoxon Statistic

1. Designate one sample as X and the other as Y. If the sample sizes are unequal,
designate the sample with the fewest observations as sample X.

2. Rank all the observations in order from lowest to highest, without regard to
whether the observation is from sample X or sample Y. If ranks are tied, assign
the average of the ranks they would have if they were not tied.

3. The observations from the first sample are identified, and their ranks are
summed. The result is the T statistic.

4. The calculated value of T is compared to the critical value of T. The critical value
is related to the number of observations in sample X (n,) and sample Y (n,).

The results appear in Table 10-5. To assign the ranks, we combine the 24 scores into a
single ordered array; we keep track of which sample produced which score by underlining
the scores from hospital X:

From eyeballing the raw data, it appears that the physicians in hospital Y are more satis-
fied than the physicians in hospital X—the scores from hospital X are generally lower than
the scores from hospital Y. In addition, the sum of the ranks for the samples X and Y are
markedly different from the expected sum, 150. The Mann-Whitney Wilcoxon statistic, T,
is the sum of the ranks assigned to the X observations, or, as in this example, the sum of the
ranks for physicians practicing in hospital X.
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A large value of Ty supports the alternative hypothesis (Hr,: Myx > My) and requires a
right-tailed p value. A small value of Ty supports Hy_: My < My and requires a left-tailed
p value. For the alternative H: My # My, double the smallest p value.

To determine the critical values of T, refer to Appendix B, Table B-8. For n; = 12 and
n, = 12, o = 0.05, the critical values of X range from 120 to 180. The null is rejected if
>Ry equals or falls below the lower number (120) or if it equals or exceeds the higher
number (180). Since 2Rx < Rit(120), we reject the null and conclude that the median
level of physician satisfaction with HIM services is significantly different between the two
hospitals.

An alternative to calculating T is the U statistic. U is calculated as

U]_ = NNy + [nl(nl + 1)/2] - ER]_
U2 = nlnz + [nz(nz + 1)/2] - ERZ

where ny is the number of observations in sample 1, n, is the number of observations in sam-
ple 2, Ry is the sum of ranks for sample 1, and R is the sum of ranks for sample 2. The null
is rejected if the calculated value of U, the smaller of U, or U,, is smaller than the critical
value of U at the predetermined alpha level.

In our example, the Mann-Whitney U statistic is calculated as:

Ui = nin, + [ny(ng + 1)/2] — 2R,
= (12)(12) + [12(12 + 1)/2] — 89.5
= 144 + 78 — 89.5
= 1325

U, = nin, + [ny(n, + 1)/2] — 2R,
= (12)(12) + [12(12 + 1)/2] — 2105
=144 + 78 — 210.5
=115

The calculated U statistic is 11.5, p < 0.05.

The assumptions for the Mann-Whitney Wilcoxon test are summarized in Exhibit 10-8.

When sample sizes are too large to use the tables, an alternate method for determining
statistical significance between the two groups is to calculate z, where

_ 3Ry — 0.5[ny(ng + n,p + 1)]
Vniny(n, + n, + 1/12
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Exhibit 10-8 Assumptions for the Mann-Whitney Wilcoxon Test

dependent variable is at least ordinal.

from two independent groups.

1. The independent variable is dichotomous, and the scale of measurement for the
2. Data are collected from a randomly selected sample of independent observations
3. The categories of the independent variable are mutually exclusive.

4. The population distributions of the two independent samples share a similar un-
specified shape but with a possible difference in measures of central tendency.

Using the data in Table 8-14, we have

89.5 — 0.5[12(12 + 12 + 1)]

V(12 X 12)(12 + 12 + 1)/12

= —3.5.

For a = 0.05, the critical value of z is —1.96. Since our calculated value, —3.5, falls in
the region of rejection, we reject the null and conclude that the level of physician satisfac-

89.5 — (150V/300)

tion between hospitals X and Y is significantly different.

The SPSS output for the Mann-Whitney U test appears in Exhibit 10-9. The Wilcoxon W,
which is provided by default, is the same as our calculated T in Table 10-5. SPSS provides
both the Wilcoxon W, which is the sum of the ranks of the smaller of U; and U, and the

calculated z statistic, —3.514.

Exhibit 10-9 SPSS Output for Mann-Whitney

Wilcoxon Test

@ Grouping Variable: Hospital.
® Not corrected for ties.

Ranks
Mean  Sum of
Hospital N Rank Ranks
Rank X 12 7.46 89.50
Y 12 1754 21050
Total 24
Test Statistics®
Rank
Mann-Whitney U 11.500
Wilcoxon W 89.500
z —-3.514
Asymp. Sig. (2-tailed) .000
Exact Sig. [2*(1-tailed Sig.)] .000°
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v To Obtain the Mann-Whitney U Using SPSS:

e From the menu, choose “Analyze”
—Nonparametric
—2 independent samples
 Select one or more numeric variables.
—Click “Mann-Whitney U”

KRUSKAL-WALLIS TEST

The nonparametric procedure that is comparable to analysis of variance (ANOVA) is the
Kruskal-Wallis procedure. The Kruskal-Wallis test is used when the populations under
study violate the assumptions of normality. The Kruskal-Wallis test does require that the
samples be independent and that there be three or more groups (k = 3). The procedure for
calculating the Kruskal-Wallis statistic, which is similar to that for the Mann-Whitney
Wilcoxon statistic, is described in Exhibit 10-10.

Exhibit 10-10 Calculation of Kruskal-Wallis Statistic

1. Combine the k samples into one single ordered array.
2. Rank-order each observation from lowest to highest, keeping track of the sam-
ples. When ranks are tied, assign the average of the ranks that would have been

assigned.

3. Sample sizes are noted by ny, ny, ..., n,. The sample sizes do not have to be
equal.

4. Calculate the sum and average of the ranks for each sample Ry, Ry, . . ., Ry, and
er Rz, PP Rk.

5. Calculate the Kruskal-Wallis statistic Q. Let N be the size of the combined sam-
ples (N = n; + n, + ns, ..., n;). Calculate the Q statistic according to

k 2
Q= 12NN + DY R — 3N + 1)
i=1 N
where R; is the sum of the ranks in sample 1, etc.; n; is the number of cases in
subgroup 1, etc.; and N is the number of cases in all samples.
6. The resulting Q statistic is compared to the critical value of x2 for k — 1 degrees
of freedom.

Like the Mann-Whitney Wilcoxon test, the Kruskal-Wallis test is based on the ranks of
the data. The null hypothesis is that all medians are equal:

Ho: M]_ = M2 = M3
The alternative hypothesis is that not all of the medians are the same:

Ha: My # M, # M
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Under the null hypothesis, we expect the average of the ranks for each group to be about

equal. If the sum of all the ranks is equal to N(N + 1)/2, we would expect that the sum of
N(N + 1)/2
the ranks for each group would be the average of the sum of all the ranks = — . In
the example in Table 10-6, there are 36 possible ranks, and the total sum of the ranks is
(36(36+1)/2), or 666. Therefore, we expect the sum of the ranks for each group to be 222.
The Kruskal-Wallis test statistic Q, also referred to as the H statistic, is a function of the
weighted sum of squares of the deviations of the actual rank sums for each group from the
expected rank sums for each group:
Kk 2
Q = 12/N(N + 1)ZR—i —3(N+1)

i=1 N
Table 10-6 Calculation of the Kruskal-Wallis Q Statistic for Physician Satisfaction Levels in Hos-
pitals A, B, and C

Hospital A Hospital B Hospital C
Phys Score Rank 1 Phys Score Rank 2 Phys Score Rank 3

1 7 7 13 15 24 25 10 10.5
2 6 5.5 14 14 19.5 26 20 36
3 4 2.5 15 15 24 27 18 35
4 1 12.5 16 16 28.5 28 13 15.5
5 16 28.5 17 16 28.5 29 14 19.5
6 4 2.5 18 16 28.5 30 8 8
7 10 10.5 19 14 19.5 31 17 33
8 6 5.5 20 12 14 32 17 33
9 9 9 21 14 19.5 33 14 19.5
10 3 1 22 17 33 34 14 19.5
11 13 15.5 23 16 28.5 35 15 24
12 5 4 24 11 12.5 36 16 28.5
3 Ray=104 3 Rg = 280 S Rc = 282
Ra = 8.67 Rg = 23.33 Rc =235

The value of the Q is a special case of the x? distribution with k — 1 degrees of freedom.
Referring to the procedure outlined in Exhibit 10-10, and extending the physician satis-
faction problem to three samples instead of two, we can calculate the Kruskal-Wallis Q sta-
tistic (Table 10-6):
k R.2
Q =12/N(N+1)> == —3(N+1)
i=1 1
= 12/36(36 + 1)[(104%/12) + (280%/12) + (282%/12)] — [3(36 + 1)]
= [(12/1,332) X (901.33 + 6,533.33 + 6,627)] — 111
= 126.55 — 111

= 15.85
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In the Kruskal-Wallis procedure, the degrees of freedom are equal to k — 1, where k
equals the number of groups. In our example, the number of groups is three; therefore, the
dfisequalto 2 (k — 1 = 3 — 1 = 2). With three groups and four or more cases per group,
the x? distribution can be used to evaluate the significance of Q... For 2 degrees of free-
dom, a = 0.05, x 2t = 5.991. Since the calculated Q exceeds the critical value, we reject
the null and conclude that the physician satisfaction level varies by hospital.

The result of the Kruskal-Wallis procedure indicates that there is a significant difference
in the group medians. But which groups are different from each other? Just as with the
ANOVA procedure, we can determine where the differences lie by conducting multiple pair-
wise comparisons. The number of possible comparisons that can be made is determined by
k(k — 1)/2; in our example we have three groups, so the total number of comparisons that
can be made is three (3[3 — 1]/2 = 3). We would then compare hospitals A and B, A and C,
and B and C. We can determine the value of the difference between the average ranks that
must exist in order for the difference to be statistically significant by

IR — Ryl > Z[VIN(N + 1)/12][L/n; + 1/n;]

where z comes from the standard normal distribution, but not in the usual way. With ¢ pair-
wise comparisons and an overall level of «, z.. is the critical value that corresponds to a right-
tailed p value of a/2.. The value of ¢ = k(k — 1)/2. Now, what does this mean? Remember
that when we use the t test or z, we are comparing two independent samples, and for a two-
tailed test, when o = 0.05, we cut 0.025 off each tail to determine significance. In this sit-
uation, we are going to make three comparisons, and if we use the same approach, we may
be too conservative in our decision-making, which could result in a type I error.

A more liberal method for making comparisons in this situation is called the Bonferroni
test for inequality. In this method, we set a more liberal alpha—that is, 0.10—to better de-
tect difference between groups. We then have

o/k = 0.10/3 = 0.033.
We then divide a/2, as usual for our nondirectional test, which results in 0.033/2 = 0.017.

The critical value of z, « = 0.017, is 2.128 (from Appendix B, Table B-1). The absolute dif-
ference between the average of the ranks that must be achieved is:

IR — R;| > Z[VIN(N + 1)/12][1/n; + 1/n;]
= 2.128 V/[36(36 + 1)/12][1/12 + 11/12]

= 2.128 \V111(0.083 + 0.083)

= 2.128(4.3)

=9.15

Comparing the absolute values of the average ranks, we have:
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|Ra —Rg | =| 867 — 23.33| = 14.66
IRa—Rc | =1 8.67 —23.50| = 14.83

|Rec — Rg | =1 23.50 — 23.33| = 0.17

Thus we determine that the median for hospital A is significantly different from the me-
dians for hospitals B and C.

Carrying out these calculations by hand can become quite tedious. We can use SPSS to
carry out the calculations for us. From the “Statistics” menu, we select “nonparametric sta-
tistics.” To conduct the Kruskal-Wallis test, we select the option for “k independent sam-
ples.” The grouping variable is “hospital,” and the test variable is “score.” Note that SPSS
(Exhibit 10-11) gives the average rank for each group rather than the sum of the ranks for
each group. However, the resulting Kruskal-Wallis x? statistic is 15.851. SPSS does not pro-
vide post hoc procedures for the Kruskal-Wallis statistic.

Exhibit 10-11 SPSS Output for Kruskal-Wallis Test

Descriptive Statistics
Std.
N Mean Deviation  Minimum Maximum
SCORE 36 12.3889  4.49938 3.00 20.00
Hospital 36  2.0000 .82808 1.00 3.00
Ranks
Hospital N Mean Rank
SCORE A 12 8.67
B 12 23.33
C 12 23.50
Total 36
Test Statistics®®
SCORE
Chi-Square 15.851
df 2
Asymp. Sig. .000
# Kruskal-Wallis Test.
® Grouping Variable: Hospital.
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v To Obtain the Kruskall-Wallis Statistic Using SPSS:

e From the menus, choose “Analyze”
—Nonparametric
—k independent samples* Select one or more numeric variables
* Select a grouping variable
—Click “define range” to specify minimum and maximum integer values for the
grouping variable

CONCLUSION

In this chapter, we have explored nonparametric statistical procedures other than chi square.
Nonparametric procedures are less restrictive than their parametric counterparts. Nonpara-
metric procedures do not make assumptions regarding the underlying population distribu-
tion nor do they require large sample sizes. Nonparametric methods may also be used for
the nominal and ordinal scales of measurement.

For assessing relationships between variables, we can use the Spearman rho correlation
coefficient, which is analogous to the Pearson r product moment correlation coefficient. If
we are interested in making comparisons between two independent samples, we can use the
Mann-Whitney Wilcoxon test as a substitute for the Student’s t and ANOVA parametric pro-
cedures. For paired samples, nonparametric procedures include the sign test and the
Wilcoxon signed ranks test. The corresponding parametric procedure is Student’s paired t
test. If we are interested in comparing three or more independent samples, the Kruskal-
Wallis test is the nonparametric alternative to the ANOVA procedure.
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Appendix 10-A

Exercises for Solving Problems

KNOWLEDGE QUESTIONS

o o~ w b -

Define the key terms listed at the beginning of this chapter.

Compare the Pearson r with the Spearman rho correlation coefficient.

Under what conditions is it appropriate to use the sign test?

Under what conditions is it appropriate to use the Wilcoxon signed ranks test?
Under what conditions is it appropriate to use the Mann-Whitney Wilcoxon test?

Under what conditions is it appropriate to use the Kruskal-Wallis test?

MULTIPLE CHOICE

1. The Spearman rho rank order correlation coefficient

a.
b.
C.

d.
e.

is used for ordered data.

has the same interpretation as the Pearson r.

may be used when one sample is ordered and the second sample is at the ratio level
of measurement.

aandb

all of the above

2. The sign test is an alternative approach to test a hypothesis about:

a.
b.
C.
d.

a single mean

the difference between matched pairs

the difference between two independent samples

the difference between three or more independent samples

296
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3. The sign test is not as likely to detect statistical significance as its parametric counter-
part. This means that:
a. the probability of making a type Il error is increased
b. the sign test is less powerful than its parametric counterpart
c. the sign test is not as sensitive as its parametric counterpart
d. all of the above

4. Nonparametric procedures:
a. are appropriate for ordered data
b. have less power than their parametric counterparts
c. have fewer assumptions regarding the underlying population distribution than their
parametric counterparts
d. bandc
e. all of the above

5. The parametric counterpart of the Kruskal-Wallis procedure is the:
a. paired t test
b. independent sample t test
c. ttest for two independent samples
d. analysis of variance (ANOVA)

6. The sum of a set of ranks may be found by:
ann-11/2
b.nn+1)/2
c.(n—-1)/2
d. (n—1)2

PROBLEMS

1. You are analyzing length of stay by physician for DRG 124, Circulatory Disorders, Ex-
cept Acute Myocardial Infarction with Cardiac Catheterization and Complex Diagnosis.
You are focusing on physicians 2050, 2210, and 8290. The lengths of stay for the patients
of these three physicians appear in Table 10-A-1. Since the sample size for each physi-
cian is small, you decide to conduct the Kruskal-Wallis test to compare the mean lengths
of stay.

a. State the null and alternative hypotheses.

b. State the alpha level.

c. What is the result of the Kruskal-Wallis test?
d. State your conclusions.
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Table 10-A-1 LOS Physician Crosstabulation (SPSS Output)

Count Physician
2050 2210 8290 Total
LOS 1 1 2 2 5
2 7 4 2 13
3 1 2 1 4
4 4 2 2 8
5 0 1 0 1
6 0 1 2 3
8 0 1 0 1
Total 13 13 9 35

2. You want to determine if more men than women are discharged from DRG 127, Heart
Failure and Shock. You believe that since more men than men suffer from heart disease,
that more men should be discharged from this DRG. The frequency distribution of dis-
charges by sex appears in Table 10-A-2. You decide to use the sign test (binomial test)
to determine if there is a difference in the proportion of discharges by sex for DRG 127.
a. State the null and alternative hypotheses.

b. State the alpha level.
c. What is the result of the sign test?
d. State your conclusions.

Table 10-A-2 Frequency Distribution of Discharges from DRG 127 by

Gender
Valid Cumulative
Frequency Percent Percent Percent
Valid FEMALE 20 32.8 32.8 32.8
MALE 41 67.2 67.2 100.0
Total 61 100.0 100.0

3. Review Exhibits 10-A-1 and 10-A-2 for discharges from DRG 127, Heart Failure and
Shock. Use the Mann-Whitney U test to determine if there is a difference in age by sex
and length of stay by sex for discharges from DRG 127.

a. State the null and alternative hypotheses.

State the alpha level.

What are the results of the Mann-Whitney U tests?

State your conclusions.

Use the ANOVA procedure to run the same analyses. Compare the ANOVA results

with the Mann-Whitney U test results.

P o0 o



Exhibit 10-A-1 Case Summaries for Female Discharges from DRG 127

(SPSS Output)

PDX Age LOS

Gender Female 1 404.91 83 4

2 404.93 88 4

3 402.91 88 6

4 428.0 82 4

5 428.40 80 10

6 428.0 80 1

7 428.0 78 4

8 428.0 76 8

9 428.0 72 3

10 428.0 66 36

11 428.0 64 6

12 428.0 64 6

13 428.0 63 3

14 428.0 61 15

15 428.0 60 3

16 428.0 59 2

17 428.0 57 27

18 428.0 57 11

19 428.0 56 8

20 402.01 54 13

Total N 20 20 20

Exhibit 10-A-2 Case Summaries for Male Discharges from DRG 127 (SPSS Output)

Problems 299

PDX Age LOS

Gender Male 1 428.0 87 10
2 428.0 86 3
3 428.0 85 5
4 428.0 84 4
5 428.0 83 2
6 428.0 80 3
7 428.0 80 2
8 428.0 79 5
9 428.0 77 3
10 428.0 77 1
11 428.0 77 3
12 428.0 76 14
13 428.0 75 17
14 428.0 75 2
15 428.0 73 3
16 428.0 73 11

(Continued)
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Exhibit 10-A-2 Case Summaries for Male Discharges from DRG 127 (SPSS Output) (Continued)

PDX Age LOS

Gender Male 17 428.0 70 6
18 428.0 69 5
19 428.0 66 7
20 428.0 65 3
21 428.0 65 5
22 428.0 64 3
23 428.43 64 1
24 404.91 63 3
25 428.0 63 3
26 428.0 60 5
27 428.0 54 1
28 428.0 53 10
29 428.0 52 2
30 428.0 51 3
31 428.0 51 1
32 428.0 51 2
33 428.0 49 1
34 428.0 47 8
35 404.03 47 3
36 428.0 47 10
37 428.0 42 8
38 428.0 39 11
39 428.0 39 3
40 404.91 37 3
41 428.0 37 16
Total N 41 41 41




APPENDIX A

Glossary

Age-adjusted death rate—The crude death rate is adjusted when population proportions
by age are different; this adjustment eliminates the effects of different age distributions
in different populations; the crude death rate is adjusted when the death rates of two
populations are to be compared.

Age-specific death rate (ASDR)—The total number of deaths for a given age group for a
certain time frame divided by the estimated population for the same age group and for
the same time frame; the ASDR is usually expressed as the number of deaths per 10"
depending on the size of the population.

Alpha error—See type | error.

Alpha level—The point at which the null hypothesis will be rejected. The alpha level, which
is set prior to conducting the research, is usually set at 0.05 for small sample sizes and
at 0.01 for larger sample sizes.

Alternative hypothesis—See hypothesis testing.

Analysis of variance (ANOVA)—A statistical method for comparing the differences be-
tween two or more means for statistical significance; the independent variable is usu-
ally nominal, and the dependent variable is at the ratio or interval level of
measurement.

Apparent limits—See class interval.

Asymptotic curve—A property of the normal distribution in which the tails of the curve
approach the x-axis but never touch it.

Attributable risk—A measure of the impact of a disease on a population; measures addi-
tional risk of illness as a result of exposure to the risk factor.

Bar chart— A graphic technique for displaying discrete or nominal-level data; one or more
variables may be displayed in a bar chart; a bar chart that displays two or more vari-
ables is called a grouped bar chart.

Beta error—See type Il error.
Between-group variance (SSB)—See sum of squares between.

301
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Box head—In a table, the box head contains the column headings.

Case fatality rate—The total number of deaths due to a specific illness during a given time
period divided by the total number of cases during the same time period.

Cause-specific death rate—The total number of deaths due to a specific cause during a
given time interval divided by the estimated mid-interval population.

Cell—In a table, a cell is where the row and column variables intersect.

Central limit theorem—In a repeated number of random samples of size N drawn from a
population, the distribution of the sample means approaches the normal distribution as
N becomes large. This occurs even when the population distribution is not normal.

Chi-square goodness-of-fit test—See x* goodness-of-fit test.
Chi-square test of independence—See x? test of independence.

Class interval—A method used to classify interval/ratio level data into categories for analy-
sis; the limits of the class intervals are referred to as either “apparent” or “real.” The
apparent limits are the upper and lower boundaries of the class interval. For example,
the upper and lower limits of two successive intervals may be 18-22 and 23-27. The
real limits depict the continuous nature of the frequency distribution, indicating that
there are no gaps between successive intervals. For example, the real limits for previ-
ously stated intervals are 17.5-22.5 and 22.5-27.5. The upper limit of one class inter-
val is the lower limit for the next class interval.

Cluster sampling—A sampling technique in which the sampling units are groups rather
than individuals.

Coefficient alpha—See Cronbach’s alpha.

Coefficient of determination—The square of the Pearson r. States how much of the vari-
ation in the dependent variable Y is explained by the independent variable X.

Confidence interval—Calculated from the standard error of the mean, it is an estimate of
the true limits within which the true population mean lies; the range of values that may
reasonably contain the true population mean.

Confounding—The relationship between two variables is so close that the effects of either
variable cannot be separated from the other.

Confounding factor—See confounding variable.

Confounding variable—A factor or variable that contributes differentially across the cate-
gories or levels of another variable; confusion of two independent variables so that the
effect of one variable cannot be differentiated from the effect of the other.

Construct validity—A type of validity that is the link between a theory and the property
being measured; a measurement instrument with construct validity is representative of
the property of interest.

Content validity—The adequacy of the sample or number of items used to represent the
content area being measured; content validity is a matter of judgment and is evaluated
by a panel of experts.
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Contingency coefficient—A measure of association between two nominal level variables;
it is an alternative to the phi coefficient when one variable has more than two cate-
gories; the range of the contingency coefficient is 0 to 1.

Contingency table—A table that displays the relationship between two variables, whether
the distribution of one variable is dependent on or related to the distribution of a sec-
ond variable.

Continuous variable—A measure taken on the interval or ratio level of measurement.

Cramer’s V—A statistic used to adjust the x? statistic for sample size. It is a measure of
correlation coefficient with a range of 0.0 to 1.0. It is used in place of the phi coeffi-
cient when the contingency table is greater than 2 X 2.

Criterion-related validity—A type of validity in which a measuring instrument correlates
with a criterion known to accurately measure the property of interest.

Critical region—In hypothesis testing, the portion of the test statistic distribution that is
equal to or beyond the critical value of the test statistic; the region of the z, t, F, or XZ
distribution that results in rejection of the null hypothesis.

Cronbach’s alpha—Also known as coefficient alpha. A measure of internal consistency.
Cronbach’s alpha has a range of 0.0 to 1.0; the minimum acceptable criterion for in-
ternal consistency is 0.70.

Crude death rate—The total number of deaths in a given population for a given time pe-
riod divided by the mid-interval population for the same time period; the crude death
rate is usually expressed as the number of deaths per 1,000 population.

Death-to-case ratio—The total number of deaths due to a specific disease during a given
time period divided by the number of new cases of the disease reported during the same
time period.

Degrees of freedom—The number of observations in a data set that are free to vary after
the mean of the distribution has been determined.

Dichotomous variable—A variable that falls on the nominal scale of measurement but is
limited to only two categories.

Direct standardization—When mortality rates of two populations are compared, each pop-
ulation is assigned the same standard population proportion for each age group; the
standard population proportion is multiplied by the age-specific death rate for each age
group in each population; the sum results in the age-adjusted death rate.

Discrete variable—A dichotomous or nominal variable whose values are placed into categories.

Effect—A change in one variable that may be associated with a change in the second vari-
able.

F test—The ratio of the between-group variance (SSB) to the within-group variance (SSW)
in the ANOVA procedure. If the F ratio is statistically significant, the observed differ-
ences between the group means of the independent variables under study will be sig-
nificantly different from each other.
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Fisher’s exact test—A statistical test that is used as a substitute for the x? test of indepen-
dence when the frequencies in a contingency table are less than or equal to 20.

Footnote—See note.

Frequency distribution—A table or graph that displays the number of times (frequency) a
particular observation occurs.

Frequency polygon—A line graph of a frequency distribution of interval or ratio level data.

Grouped bar chart—Used to illustrate data from a two- or three-variable table when an
outcome variable has only two categories; the bars within a group are adjoining.

Histogram—A graphic technique used to display the frequency distribution of interval or
ratio level data; the frequency distribution can be displayed as either numbers or per-
centages in a series of bars.

Hypothesis testing—A statement regarding the research question to be tested. There are two
forms of the hypothesis: the null hypothesis and the alternative hypothesis. The null hy-
pothesis states that there is no difference between the population means or proportions
that are being compared, or that there is no association between the two variables that
are being compared. The alternative hypothesis states that there is a significant differ-
ence in the population means or proportions that are being compared, or that there is an
association between the two variables that are being compared. The alternative hypoth-
esis usually states what the researcher believes to be true regarding the problem under
study.

Incidence rate—The number of new cases of a particular disease in a population for a given
time period divided by the average population for the same time period.

Individuality—For nominal-level data, the circumstance in which the number of observa-
tions in a given category is limited to one.

Infant mortality rate—The number of deaths of persons under one year of age during a
given time period divided by the number of live births reported during the same time
period.

Intercept—Represented by “a” in the regression model. It is the point at which the regres-
sion line crosses the y-axis. The intercept is the average value of Y when X is equal to
zero.

Internal consistency—The extent to which the items on a measuring instrument are con-
sistent with one another; Cronbach’s alpha is used to evaluate internal consistency.

Interrater agreement—See interrater reliability.

Interrater reliability—The percentage of agreement between raters using the same mea-
suring instrument; the kappa coefficient is used to measure interrater agreement.

Interval scale—Similar to the ratio scale of measurement, but there is no true zero; inter-
vals between successive intervals are equal and continuous.

Kaplan Meier survival analysis—A statistical method used to analyze the survival time of
individuals with a specific disease; it is most often used in analyzing the survival time
of cancer patients.
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Kappa coefficient—A measure of agreement, beyond what would occur by chance, be-
tween two raters on the same measuring instrument. The Kappa coefficient ranges
from 0.0 to 1.0.

Kruskal-Wallis test—The nonparametric counterpart to the ANOVA procedure; it is used
to compare two or more groups of ordinal data.

Kurtosis—The vertical stretching of a frequency distribution.

Level of significance (or significance level)—A cutoff value for evaluating the p value that
results from a statistical test; indicates the level of risk that we are willing to take for
rejecting the null hypothesis when it is true.

Line graph—A graphic technique that consists of a line connecting a series of points on an
arithmetic scale; a line graph is often used to display time trends and survival curves;
a line graph does not represent a frequency distribution.

Linear regression—A statistical test used to measure the strength of the linear relationship
between two variables; the variables under study are at the interval or ratio level of
measurement.

Line of best fit—See regression line.

Mann-Whitney U test—also known as the Mann-Whitney Wilcoxon test. The nonpara-
metric counterpart to the Student’s t test for two independent samples; used to compare
two groups of ordinal-level data.

Mann-Whitney Wilcoxon Test—See Mann-Whitney U Test.

Maternal mortality rate—The number of deaths assigned to pregnancy-related causes dur-
ing a given time period divided by the total number of live births during the same
period.

McNemar test—The nonparametric test used for paired data; analogous to the paired t test.

Mean—A measure of central tendency; arithmetic average of the observations in a fre-
quency distribution; the sum of the values of the observations in a frequency distribu-
tion divided by the total number of observations.

Mean square—Also known as the variance. The sum of squares divided by the appropriate
number of degrees of freedom.

Measurement—The process of measuring an attribute or property of a person, object, or
event according to a particular set of rules; the set of rules is used to assign numbers
to the attribute or property being measured.

Measures of central tendency—A single value that summarizes a frequency distribution
or illustrates the most typical value in a frequency distribution; measures of central ten-
dency are the mean, median, and the mode. The measure selected to represent the data
set depends on the characteristics and shape of the distribution.

Measures of variation—Describes how much spread there is in a frequency distribution;
measures of variation include the range, standard deviation, and the variance.

Median—A measure of central tendency; midpoint of a frequency distribution when the ob-
servations have been arranged in order from lowest to highest; point at which 50% of
the observations fall above and 50% of the observations fall below.
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Mode—A measure of central tendency; the most frequently occurring observation in a fre-
quency distribution.

Mortality rate—See crude death rate.

Multicollinearity—In multiple regression, when two independent variables are highly cor-
related with one another, and it is difficult to separate the effects of each independent
variable on the dependent variable.

Multiple regression—A statistical procedure used to explain the effects of two or more in-
dependent variables on a dependent variable; it is an extension of the linear regression
model.

Neonatal death rate—The number of deaths of newborns under 28 days of age during a
given time period divided by the number of live births during the same time period.

Neonatal mortality rate—See neonatal death rate.

Nominal scale—A level of measurement in which the frequencies of observations on vari-
ables are placed into categories.

Noncritical region—In hypothesis testing, the area of the test statistic distribution that is

between the critical values of the test statistic; if the calculated value of the test statis-
tic falls within this region, we fail to reject the null hypothesis.

Nonparametric statistical tests—Tests used to test for statistical significance when the un-
derlying population distribution does not meet the requirements of the normal distri-
bution or when sample sizes are small.

Normal distribution—A continuous frequency distribution characterized by a bell-shaped
curve; a normal distribution is symmetrical with 50% of the values falling above the
mean and 50% of the values falling below the mean.

Note—EXxplanation that appears below a table, chart, or graph to explain symbols or abbre-
viations that may have been used in the table, chart, or graph.

Null hypothesis—See hypothesis testing.

Odds ratio—A relative measure of occurrence of an illness; the odds of exposure in a dis-
eased group divided by the odds of exposure in a non-diseased group.

One-sample t test—See t tests.

100% component bar chart—A variant of the stacked bar chart; all bars in the chart are
of the same height; each bar displays the variable categories as percents of the total
number; each bar is like its own pie chart.

One-tailed test (directional test)}—In hypothesis testing, the researcher is trying to deter-
mine if the sample mean is greater than or less than the population parameter.

Ordinal scale—Scale of measurement in which measures are placed into ordered categories
or measures are ranked in some predetermined order such as lowest score on a test to
highest score on a test; the width between categories or ranks may not be equal.

Outliers—Extreme values in a frequency distribution.

p value—The probability that the observed difference could have been obtained by chance
alone, given random variation and a single test of the null hypothesis.
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Paired t test—See t test.

Parametric statistical tests—Statistical tests of significance used when the underlying
population distributions are assumed to be normal.

Pearson r correlation coefficient—A measure of the strength of the linear association be-
tween two variables that fall on the interval or ratio level of measurement. The Pearson
r correlation coefficient has a range of —1.0 to +1.0; a negative correlation indicates
that the variables change in opposite direction to one another, a positive correlation that
the variables change in the same direction and a correlation of 0.0 that there is no re-
lationship between the two variables.

Percentile Rank—The proportion of scores in a distribution that a specific score is greater
than or equal to. For example, if a hospital ranks in the 98th percentile in terms of
severity of illness it means that the hospital has a patient population sicker than or
equal to 98% of the hospitals ranked.

Phi coefficient—A measure that indicates the degree of association between two nominal
level variables; the range of the phi coefficient is 0 to 1; it has the same interpretation
as the Pearson r product moment correlation coefficient.

Pie chart—A graphic technique in which the proportions of a nominal variable are dis-
played as “pieces” of the pie.

Point estimate—The numerical value calculated from a sample that is assumed to best rep-
resent the population parameter.

Point prevalence rate—The number of current cases, both new and old, of a specified dis-
ease at a given point in time compared to the estimated population at the same point in
time; the point prevalence rate is usually expressed as the number of cases per 10", de-
pending on the size of the population.

Polarization—The maximum spread or variability in a frequency distribution.

Population—All members of a group that is under study; the group to which the sample
results are generalizable; members of the group share some measurable charac-
teristic.

Population parameter—A measure that results from the compilation of data from a popu-
lation.

Post hoc procedures—Statistical follow-up tests following the ANOVA procedure when
three or more means are being compared; the post hoc test indicates whether all means
compared are significantly different from each other or if only several are significantly
different from each other.

Postneonatal mortality rate—The number of deaths of persons aged 28 days up to and not
including one year during a given time period divided by the number of live births for
the same time period.

Predictive value—The number of cases correctly identified by a measure out of the total
number of cases with the property of interest.

Prevalence rate—The number of cases of a particular disease in a population for a given
time period divided by the population for the same time period.
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Proportion—A particular type of ratio; in a proportion, the numerator is always included
in the denominator.

Proportionate mortality ratio (PMR)—The total number of deaths due to a specific cause
during a given time period divided by the number of deaths due to all causes. Propor-
tionate mortality is not a rate because the denominator is the number of deaths during
the time period, not the population size during the time period.

Race-specific death rate—The number of deaths in a specific ethnic group for a given
timeframe compared to the estimated population total for the same ethnic group for the
same time frame; the race-specific death rate is usually expressed as the number of
deaths per 10", depending on the size of the population.

Range—A measure of variability; the difference between the smallest and largest values in
a frequency distribution.

Rate—A measure used to compare an event over time; comparison of the number of times
an event did happen (numerator) to the number of times an event could have happened
(denominator); rates are expressed as the event of interest per 100, 1,000, 10,000, or
100,000 cases.

Ratio—A comparison of categories of dichotomous variables either to each other (e.g.,
male discharges to female discharges), or of one category to the whole (e.g., male dis-
charges to total discharges).

Ratio scale—The highest level of measurement; intervals between successive intervals are
equal and continuous; measurement scale with a true zero.

Real limits—See class interval.

Regression line—The slope in the regression model. It is the straight line that best fits all
of the data points in the regression problem. If the correlation is perfect, the regression
line will go through all of the data points simultaneously.

Relative risk—See risk ratio.

Reliability—A characteristic of a measuring instrument that results in consistent measures
over repeated trials; measurement results are approximately the same on repeated trials.

Risk ratio—Also called relative risk. A ratio that compares the risk of disease between two
groups.

Sample—Items drawn from a population for a study; ideally, members of the sample are
drawn randomly and independently from the population of interest; a subset of the pop-
ulation under study.

Sampling method—The process of selecting individuals from a larger group or population
in such a way that the resultant sample is representative of the underlying population.

Scales of measurement—Nominal, ordinal, interval, and ratio scales of measurement. The
level at which data are collected determines the types of statistics that may be used to
describe the population under study.

Sample statistic—The measures that result from analysis of data compiled from samples.

Scatter diagram—A graphic representation of the X and Y variables. The X variable is plot-
ted on the horizontal axis and the Y variable is plotted on the vertical axis. It is used to
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assess the linearity of the relationship between variables X and Y when conducting ei-
ther the Pearson r or simple linear regression. If the two variables appear to approxi-
mate a straight line, the variables are linearly related.

Scheffé test—A post hoc test used in the analysis of variance procedure when there are
three or more sample means being compared. It is a test used to determine which of the
means are significantly different from each other.

Sensitivity—An aspect of data accuracy (validity); a measure is sensitive if it identifies the
property of interest when that property is truly present.

Sex-specific death rate—The number of male or female deaths for a given time frame com-
pared to the estimated male or female population total for the same time frame; the sex
specific death rate is usually expressed as the number of deaths per 10", depending on
the size of the population.

Sign test—The nonparametric counterpart to the paired-sample t test; compares whether
one group did better than another group.

Simple random sampling—A sampling technique in which each member of a population
has an equal chance of being included in the sample.

Skewness—The horizontal stretching of a frequency distribution.

Slope—In the regression model, the slope (b) represents the average change in Y that is as-
sociated with X. The greater the slope, the greater the change in Y that is associated
with a change in X, and the greater the relationship between X and Y.

Source—A statement following a table, chart, or graph that indicates the resource used to
generate the table, chart, or graph.

Spearman rho—The nonparametric counterpart of the Pearson r used when one of the variables
is ordered; the interpretation of the Spearman rho is the same as that for the Pearson r.

Specificity—An aspect of data accuracy (validity); a measure that is specific excludes cases
when the property of interest is truly absent.

SSB—See sum of squares between.
SSW—See sum of squares within.

Stability—A type of reliability in which the same or similar results are obtained on repeated
measures by administering the same instrument to the same group on two different oc-
casions to obtain a reliability coefficient that ranges from 0.0 (no reliability) to 1.0
(perfect reliability).

Stacked bar chart—A type of bar chart in which the categories of a nominal level variable
are stacked like building blocks on top of one another to form a single bar; the bar
represents the total number of cases that occurred in the category and the segments rep-
resent the frequencies within the category.

Standard deviation—A measure of variability; square root of the variance; describes devi-
ation from the mean in terms of the original unit of measurement (e.g., height, age,
blood pressure).
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Standard error of the estimate—In linear regression, a measure of the scatter or spread of
the observed values of Y around the corresponding values of Y estimated from the re-
gression equation.

Standard error of the mean—A measure of how close the sample mean is to the popula-
tion mean; it is influenced by the sample size and standard deviation.

Standard mortality rate—See standard mortality ratio.

Standard mortality ratio (SMR)—Compares the actual number of deaths in a group or
population under study compared to the expected number of deaths based on standard
population death rates applied to the study group or population; this measure is always
multiplied by 100.

Standard normal deviate—In the standard normal distribution, the distance between the
observed value and the mean, w; it is also referred to as the z score or z value.

Standard normal distribution—A normal distribution with a mean equal to zero and a
standard deviation equal to one.

Standardized residuals—In the x? test of independence, a residual is the difference be-
tween the observed cell frequencies and the expected cell frequencies. To obtain the
standardized residual, the difference between the observed and expected cell frequen-
cies for each cell is divided by the square root of the expected cell frequency. An ob-
tained standardized residual of greater than +2 or less than —2 is an indication that the
cell in question is an important contributor to the calculated x°.

Statistical power analysis—Statistical power analysis assists the researcher in determining
the appropriate sample size for conducting a statistical test while controlling for both
type | and type Il error.

Statistical significance—In hypothesis testing, when a statistical test results in a p value
that is less than or equal to the preset alpha level; this is usually set at 0.05 for small
samples and 0.01 for large samples. The interpretation of the p value is that the result
obtained would occur by chance no more than 5 out of 100 times when p = 0.05, or 1
out of 100 times when p = 0.01.

Stratified random sampling—A sampling technique in which each stratum within a pop-
ulation is proportionately represented in the sample.

Stub—The row captions in a table.

Sum of squares between (SSB)—In the analysis of variance procedure, the SSB is the vari-
ation of the sample means around the grand mean.

Sum of squares within (SSW)—In the analysis of variance procedure, the SSW is the vari-
ation of the observations in each sample around their respective sample means.

Symmetrical—See symmetry.

Symmetry—A property of the normal distribution in which 50% of the observations fall
above the mean and 50% of the observations fall below the mean.

Systematic sampling—A sampling technique in which every kth member of a population
is selected for inclusion in the sample.
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t statistic—A statistic that follows the t distribution; see t test.

t test—A parametric statistical test that compares the difference between the means of two
groups; the t test may be used when comparing a single sample mean to a known pop-
ulation parameter (independent sample t test), when comparing the means of two in-
dependent samples (t test for two independent samples), or when comparing the means
of matched pairs (paired t test).

t test for comparing two independent sample means—See t test.
Table—A set of data arranged in rows and columns.

Table shell—Prepared prior to collection of data to show how the data will be organized and
displayed after data collection; table shells are complete except for the actual data;
table shells show titles, headings, and categories.

Test-retest reliability—See stability.

Timeliness—The collection, analysis, and reporting of data/information within a time
frame useful for decision making.

Total sum of squares (TSS)—In the analysis of variance procedure, the TSS is the varia-
tion of all the observations (combined into one sample) around the grand mean.

Trimmed mean—The calculation of the mean or a frequency distribution after the elimi-
nation (trimming) of outliers from the distribution.

TSS—See total sum of squares.

Tukey HSD—A post hoc test used in the analysis of variance procedure when there are
three or more sample means being compared. It is a test used to determine which of the
sample means are significantly different from each other.

Two-tailed test (nondirectional test)—In hypothesis testing, the researcher is interested in
determining whether the sample mean and the population parameter are significantly
different from each other; the direction of the inequality is not an issue.

Type | error—Also called alpha error; the rejection of the null hypothesis when it is true.
Type Il error—Also called beta error; failure to reject the null hypothesis when it is false.
Uniformity—Even distribution of observations in the categories of a nominal variable.
Unimodal—Property of the normal distribution in which there is only one mode.

Validity—Accuracy in measurement; a valid measuring instrument accurately measures
what it is intended to measure.

Variable—A characteristic or property that may take on different values.

Variance—A measure of variability; the average of the squared deviations from the mean;
measures variability in original units of measurement squared.

Weighted mean—A mean that takes into account differences in sample size; the weighted

mean is equal to the sum of the means times the number of observations in each sam-
ple divided by the total number of observations in the samples combined.

Wilcoxon signed ranks test—The nonparametric counterpart of the paired t test; used
when sample sizes are small or when the underlying population distribution is not nor-
mally distributed.
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Winsorized mean—A type of mean (average) which has been adjusted for extreme values
in the frequency distribution; the most extreme values (highest and lowest) in the dis-
tribution are changed to the next less extreme values.

Within-group variance (SSW)—Also known as the error term in the ANOVA procedure;
a measure of variation within each group that is being compared; it is a measure of the
sample observations around the sample mean.

x? goodness-of-fit test—A nonparametric test used to determine whether the observed fre-
guencies in a distribution are significantly different from the expected or theoretical
frequencies in a distribution, based on the researcher’s knowledge of a population un-
derstudy. The null hypothesis states that there is no difference between the observed
and expected frequencies; the alternative hypothesis states that there is a difference be-
tween the observed and expected frequencies. The x? goodness-of-fit test is often used
to determine whether proportions in a randomly drawn sample are significantly differ-
ent from the underlying or theoretical population proportions.

x? test of independence—A nonparametric test used to determine whether a relationship
exists between two variables in a 2 X 2 contingency table or an R X C table. Measures
for the variables are nominal or dichotomous. The test uses frequencies of the vari-
ables, not the actual observations. The null hypothesis states that there is no relation-
ship between the two variables; thus, they are independent of each other. The
alternative hypothesis states that there is a relationship between the two variables.

Yates correction for continuity—An adjustment made to the chi-square procedures when
the counts in a contingency table are small or when any expected cell count is less than
five.

z score—In the standard normal distribution, the number of standard deviation units that the
observed value is away from the mean, .

z statistic—The critical value of z; the calculated value of z is compared to the z statistic in
order to determine statistical significance.

z test for comparing two independent population means—See z tests.
z test for comparing two population proportions—See z tests.

Z tests—A parametric test of statistical significance; test is used to make comparisons for
two independent population means or two independent population proportions or for
comparing a sample mean to a population mean when population parameters are
known. It is assumed that the population distributions are normal. In a one-tailed or di-
rectional z test, the researcher is trying to determine if the sample mean is significantly
less or significantly greater than the population parameter . In a two-tailed or nondi-
rectional z test, the researcher is trying to determine if the sample mean is significantly
different (either greater than or less) from the population parameter .

z-value—See z score.



Table B-1 Areas under the Normal Curve

APPENDIX B

Statistical Tables

z Cump Tail p z Cum p Tail p z Cump Tail p
0.00 0.5000 0.5000 0.32 0.6255 0.3745 0.64 0.7389 0.2611
0.01 0.5040 0.4960 0.33 0.6293 0.3707 0.65 0.7422 0.2578
0.02 0.5080 0.4920 0.34 0.6331 0.3669 0.66 0.7454 0.2546
0.03 0.5120 0.4880 0.35 0.6368 0.3632 0.67 0.7486 0.2514
0.04 0.5160 0.4840 0.36 0.6406 0.3594 0.68 0.7517 0.2483
0.05 0.5199 0.4801 0.37 0.6443 0.3557 0.69 0.7549 0.2451
0.06 0.5239 0.4761 0.38 0.6480 0.3520 0.70 0.7580 0.2420
0.07 0.5279 0.4721 0.39 0.6517 0.3483 0.71 0.7611 0.2389
0.08 0.5319 0.4681 0.40 0.6554 0.3446 0.72 0.7642 0.2358
0.09 0.5359 0.4641 0.41 0.6591 0.3409 0.73 0.7673 0.2327
0.10 0.5398 0.4602 0.42 0.6628 0.3372 0.74 0.7704 0.2296
0.11 0.5438 0.4562 0.43 0.6664 0.3336 0.75 0.7734 0.2266
0.12 0.5478 0.4522 0.44 0.6700 0.3300 0.76 0.7764 0.2236
0.13 0.5517 0.4483 0.45 0.6736 0.3264 0.77 0.7794 0.2206
0.14 0.5557 0.4443 0.46 0.6772 0.3228 0.78 0.7823 0.2177
0.15 0.5596 0.4404 0.47 0.6808 0.3192 0.79 0.7852 0.2148
0.16 0.5636 0.4364 0.48 0.6844 0.3156 0.80 0.7881 0.2119
0.17 0.5675 0.4325 0.49 0.6879 0.3121 0.81 0.7910 0.2090
0.18 0.5714 0.4286 0.50 0.6915 0.3085 0.82 0.7939 0.2061
0.19 0.5753 0.4247 0.51 0.6950 0.3050 0.83 0.7967 0.2033
0.20 0.5793 0.4207 0.52 0.6985 0.3015 0.84 0.7995 0.2005
0.21 0.5832 0.4168 0.53 0.7019 0.2981 0.85 0.8023 0.1977
0.22 0.5871 0.4129 0.54 0.7054 0.2946 0.86 0.8051 0.1949
0.23 0.5910 0.4090 0.55 0.7088 0.2912 0.87 0.8078 0.1922
0.24 0.5948 0.4052 0.56 0.7123 0.2877 0.88 0.8106 0.1894
0.25 0.5987 0.4013 0.57 0.7157 0.2843 0.89 0.8133 0.1867
0.26 0.6026 0.3974 0.58 0.7190 0.2810 0.90 0.8159 0.1841
0.27 0.6064 0.3936 0.59 0.7224 0.2776 0.91 0.8186 0.1814
0.28 0.6103 0.3897 0.60 0.7257 0.2743 0.92 0.8212 0.1788
0.29 0.6141 0.3859 0.61 0.7291 0.2709 0.93 0.8238 0.1762
0.30 0.6179 0.3821 0.62 0.7324 0.2676 0.94 0.8264 0.1736
0.31 0.6217 0.3783 0.63 0.7357 0.2643 0.95 0.8289 0.1711
continues
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z Cump Tail p z Cump Tail p z Cump Tail p
0.96 0.8315 0.1685 1.44 0.9251 0.0749 1.92 0.9726 0.0274
0.97 0.8340 0.1660 1.45 0.9265 0.0735 1.93 0.9732 0.0268
0.98 0.8365 0.1635 1.46 0.9279 0.0721 1.94 0.9738 0.0262
0.99 0.8389 0.1611 1.47 0.9292 0.0708 1.95 0.9744 0.0256
1.00 0.8413 0.1587 1.48 0.9306 0.0694 1.96 0.9750 0.0250
1.01 0.8438 0.1562 1.49 0.9319 0.0681 1.97 0.9756 0.0244
1.02 0.8461 0.1539 1.50 0.9332 0.0668 1.98 0.9761 0.0239
1.03 0.8485 0.1515 1.51 0.9345 0.0655 1.99 0.9767 0.0233
1.04 0.8508 0.1492 1.52 0.9357 0.0643 2.00 0.9772 0.0228
1.05 0.8531 0.1469 1.53 0.9370 0.0630 2.01 0.9778 0.0222
1.06 0.8554 0.1446 1.54 0.9382 0.0618 2.02 0.9783 0.0217
1.07 0.8577 0.1423 1.55 0.9394 0.0606 2.03 0.9788 0.0212
1.08 0.8599 0.1401 1.56 0.9406 0.0594 2.04 0.9793 0.0207
1.09 0.8621 0.1379 1.57 0.9418 0.0582 2.05 0.9798 0.0202
1.10 0.8643 0.1357 1.58 0.9429 0.0571 2.06 0.9803 0.0197
1.11 0.8665 0.1335 1.59 0.9441 0.0559 2.07 09808 0.0192
1.12 0.8686 0.1314 1.60 0.9452 0.0548 2.08 0.9812 0.0188
1.13 0.8708 0.1292 1.61 0.9463 0.0537 2.09 0.9817 0.0183
1.14 0.8729 0.1271 1.62 0.9474 0.0526 210 0.9821 0.0179
1.15 0.8749 0.1251 1.63 0.9484 0.0516 2.11 0.9826 0.0174
1.16 0.8770 0.1230 1.64 0.9495 0.0505 212 0.9830 0.0170
1.17 0.8790 0.1210 1.65 0.9505 0.0495 2.13 0.9834 0.0166
1.18 0.8810 0.1190 1.66 0.9515 0.0485 2.14 0.9838 0.0162
1.19 0.8830 0.1170 1.67 0.9525 0.0475 2.15 0.9842 0.0158
1.20 0.8849 0.1151 1.68 0.9535 0.0465 2.16 0.9846 0.0154
1.21 0.8869 0.1131 1.69 0.9545 0.0455 217 0.9850 0.0150
1.22 0.8888 0.1112 1.70 0.9554 0.0446 2.18 0.9854 0.0146
1.23 0.8907 0.1093 1.71 0.9564 0.0436 2.19 0.9857 0.0143
1.24 0.8925 0.1075 1.72 0.9573 0.0427 2.20 0.9861 0.0139
1.25 0.8944 0.1056 1.73 0.9582 0.0418 2.21 0.9864 0.0136
1.26 0.8962 0.1038 1.74 0.9591 0.0409 2.22 0.9868 0.0132
1.27 0.8980 0.1020 1.75 0.9599 0.0401 2.23 0.9871 0.0129
1.28 0.8997 0.1003 1.76 0.9608 0.0392 2.24 0.9875 0.0125
1.29 0.9015 0.0985 1.77 0.9616 0.0384 2.25 0.9878 0.0122
1.30 0.9032 0.0968 1.78 0.9625 0.0375 2.26 0.9881 0.0119
1.31 0.9049 0.0951 1.79 0.9633 0.0367 2.27 0.9884 0.0116
1.32 0.9066 0.0934 1.80 0.9641 0.0359 2.28 0.9887 0.0113
1.33 0.9082 0.0918 1.81 0.9649 0.0351 2.29 0.9890 0.0110
1.34 0.9099 0.0901 1.82 0.9656 0.0344 2.30 0.9893 0.0107
1.35 0.9115 0.0885 1.83 0.9664 0.0336 2.31 0.9896 0.0104
1.36 0.9131 0.0869 1.84 0.9671 0.0329 2.32 0.9898 0.0102
1.37 0.9147 0.0853 1.85 0.9678 0.0322 2.33 0.9901 0.0099
1.38 0.9162 0.0838 1.86 0.9686 0.0314 2.34 0.9904 0.0096
1.39 0.9177 0.0823 1.87 0.9693 0.0307 2.35 0.9906 0.0094
1.40 0.9192 0.0808 1.88 0.9699 0.0301 2.36 0.9909 0.0091
1.41 0.9207 0.0793 1.89 0.9706 0.0294 2.37 0.9911 0.0089
1.42 0.9222 0.0778 1.90 0.9713 0.0287 2.38 0.9913 0.0087
1.43 0.9236 0.0764 1.91 0.9719 0.0281 2.39 0.9916 0.0084

continues
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Table B-1 continued

z Cump Tail p z Cump Tail p z Cump Tail p
2.40 0.9918 0.0082 2.80 0.9974 0.0026 3.20 0.9993 0.0007
2.41 0.9920 0.0080 2.81 0.9975 0.0025 3.21 0.9933 0.0007
2.42 0.9922 0.0078 2.82 0.9976 0.0024 3.22 0.9994 0.0006
2.43 0.9925 0.0075 2.83 0.9977 0.0023 3.23 0.9994 0.0006
2.44 0.9927 0.0073 2.84 0.9977 0.0023 3.24 0.9994 0.0006
2.45 0.9929 0.0071 2.85 0.9978 0.0022 3.25 0.9994 0.0006
2.46 0.9931 0.0069 2.86 0.9979 0.0021 3.26 0.9994 0.0006
2.47 0.9932 0.0068 2.87 0.9979 0.0021 3.27 0.9995 0.0005
2.48 0.9934 0.0066 2.88 0.9980 0.0020 3.28 0.9995 0.0005
2.49 0.9936 0.0064 2.89 0.9981 0.0019 3.29 0.9995 0.0005
2.50 0.9938 0.0062 2.90 0.9981 0.0019 3.30 0.9995 0.0005
2.51 0.9940 0.0060 2.91 0.9982 0.0018 3.31 0.9995 0.0005
2.52 0.9941 0.0059 2.92 0.9982 0.0018 3.32 0.9995 0.0005
2.53 0.9943 0.0057 2.93 0.9983 0.0017 3.33 0.9996 0.0004
2.54 0.9945 0.0055 2.94 0.9984 0.0016 3.34 0.9996 0.0004
2.55 0.9946 0.0054 2.95 0.9984 0.0016 3.35 0.9996 0.0004
2.56 0.9948 0.0052 2.96 0.9985 0.0015 3.36 0.9996 0.0004
2.57 0.9949 0.0051 2.97 0.9985 0.0015 3.37 0.9996 0.0004
2.58 0.9951 0.0049 2.98 0.9986 0.0014 3.38 0.9996 0.0004
2.59 0.9952 0.0048 2.99 0.9986 0.0014 3.39 0.9997 0.0003
2.60 0.9953 0.0047 3.00 0.9987 0.0013 3.40 0.9997 0.0003
2.61 0.9955 0.0045 3.01 0.9987 0.0013 3.41 0.9997 0.0003
2.62 0.9956 0.0044 3.02 0.9987 0.0013 3.42 0.9997 0.0003
2.63 0.9957 0.0043 3.03 0.9988 0.0012 3.43 0.9997 0.0003
2.64 0.9959 0.0041 3.04 0.9988 0.0012 3.44 0.9997 0.0003
2.65 0.9960 0.0040 3.05 0.9989 0.0011 3.45 0.9997 0.0003
2.66 0.9961 0.0039 3.06 0.9989 0.0011 3.46 0.9997 0.0003
2.67 0.9962 0.0038 3.07 0.9989 0.0011 3.47 0.9997 0.0003
2.68 0.9963 0.0037 3.08 0.9990 0.0010 3.48 0.9997 0.0003
2.69 0.9964 0.0036 3.09 0.9900 0.0010 3.49 0.9998 0.0002
2.70 0.9965 0.0035 3.10 0.9900 0.0010 3.50 0.9998 0.0002
2.711 0.9966 0.0034 3.11 0.9991 0.0009

2.72 0.9967 0.0033 3.12 0.9991 0.0009 3.60 0.9998 0.0002
2.73 0.9968 0.0032 3.13 0.9991 0.0009

2.74 0.9969 0.0031 3.14 0.9992 0.0008 3.70 0.9999 0.0001
2.75 0.9970 0.0030 3.15 0.9992 0.0008

2.76 0.9971 0.0029 3.16 0.9992 0.0008 3.80 0.9999 0.0001
2.77 0.9972 0.0028 3.17 0.9992 0.0008 3.90 1.000 0.0000
2.78 0.9973 0.0027 3.18 0.9993 0.0007

2.79 0.9974 0.0026 3.19 0.9993 0.0007

Source: Copyright © Dr. Victor Bissonnette.
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Table B-2 Critical Values of the t Distribution

Two-Tailed Testing/(One-Tailed Testing)

0.2 0.1 0.05 0.02 0.01 0.001

df 0.1 0.05 0.025 0.01 0.005 0.0005
5 1.476 2.015 2.571 3.365 4.032 6.869
6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.408
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781
10 1.372 0.812 2.228 2.764 3.169 4.587
11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2131 2.602 2.947 4.073
16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850
21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.768
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.551
50 1.299 1.676 2.009 2.403 2.678 3.496
60 1.296 1.671 2.000 2.390 2.660 3.460
80 1.292 1.664 1.990 2.374 2.639 3.416
100 1.290 1.660 1.984 2.364 2.626 3.390
120 1.289 1.658 1.980 2.358 2.617 3.373
o 1.282 1.645 1.960 2.327 2.576 3.291

Source: Copyright © Dr. Victor Bissonnette.
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df between

df
within 1 3 4 5 6 7 8 12 24 o0
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.68 4.53 4.37
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 415 4.00 3.84 3.67
7 5.59 4.74 4.35 412 3.97 3.87 3.79 3.73 3.57 3.41 3.23
8 532 446 407 384 369 358 350 344 328 312 293
9 512 426 386 3.63 348 337 329 323 307 290 271
10 496 410 3.71 348 333 322 314 3.07 2091 274 254
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.79 2.61 2.41
12 475 389 349 3.26 3.11 3.00 2.91 285 269 2.51 2.30
13 4.67 3.81 3.41 3.18 3.03 292 283 277 260 242 2.21
14 460 3.74 3.34 3.11 296 285 276 270 253 235 213
15 454 368 329 306 290 279 271 264 248 229 2.07
16 449 363 3.24 3.01 285 274 266 259 242 224 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.38 2.19 1.96
18 4.41 355 3.16 293 277 266 258 2.51 234 215 1.92
19 438 352 313 290 274 263 254 248 2.31 2.1 1.88
20 435 349 310 2.87 2.71 260 2.51 245 228 2.08 1.84
21 432 347 307 284 268 257 249 242 225 205 1.81
22 430 344 305 282 266 255 246 240 223 2.03 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.20 2.01 1.76
24 426 340 3.01 278 2.62 2.51 242 236 218 1.98 1.73
25 424 339 299 276 260 249 240 234 216 196 1.71
26 423 337 298 274 259 247 239 232 215 195 1.69
27 4.21 335 296 273 257 246 237 2.31 213 193 1.67
28 420 334 295 271 256 245 236 229 212 1.91 1.66
29 418 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.10 1.90 1.64
30 417 332 292 269 253 242 233 227 209 189 1.62
40 4.08 3.23 2.84 2.61 245 234 225 218 2.00 1.79 1.51
60 400 315 276 253 237 225 217 210 192 170 1.39
80 396 3.11 272 249 233 221 213 206 188 1.65 1.33
100 394 3.09 270 246 2.31 219 210 2.03 185 1.63 1.28
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.83 1.61 1.26
o 3.84 3.00 2.61 237 222 210 2.01 194 175 152 1.00

Source: Copyright © Dr. Victor Bissonnette.



318  AppeENDIX B StATISTICAL TABLES

Table B-4 Critical Values of the Studentized Range Statistic

No. of Groups

df
within a 2 3 4 5 6 7 8 9 10

5 0.05 3.64 460 522 567 6.03 633 6.58 6.80 6.99
0.01 570 698 780 842 8.91 9.32  9.67 9.97 10.24
6 0.05 346 434 490 530 563 59 612 6.32 6.49
0.01 524 633 703 756 797 832 8.61 8.87 9.10
7 005 334 416 468 5.06 536 5.61 5.82 6.00 6.16
0.01 495 592 6.54 7.01 737 7.68 7.94 8.17 8.37
8 0.05 3.26 4.04 453 489 517 450 5.60 5.77 5.92
0.01 475 564 6.20 6.62 696 724 747 7.68 7.86
9 0.05 3.20 3.95 44 476 5.02 524 543 5.59 5.74
0.01 460 543 596 635 6.66 6.91 713  7.33 7.49
10 0.05 315 3.88 433 4.65 4.9 512 5.30 5.46 5.60
0.01 448 527 577 614 6.43 6.67 687 7.05 7.21
11 0.05 3.11 3.82 426 457 482 5.03 520 5.35 5.49
0.01 439 515 562 597 6.25 648 6.67 6.84 6.99
12 0.05 3.08 377 420 4.51 475 495 512 5.27 5.39
0.01 432 505 550 584 610 6.32 6.51 6.67 6.81
13 005 3.06 373 415 445 469 488 5.05 5.19 5.32
0.01 426 496 540 573 598 6.19 6.37 6.53 6.67
14 0.05 3.03 3.70 4.11 4.41 464 483 499 5.13 5.25
0.01  4.21 489 532 563 588 6.08 6.26 6.41 6.54
15 0.05 3.01 3.67 4.08 437 459 478 494 5.08 5.20
0.01 417 484 525 556 580 599 6.16 6.31 6.44
16 005 3.00 365 405 433 456 474 490 5.08 5.15
0.01 4143 479 519 549 572 592 6.08 6.22 6.35
17 0.05 298 3.63 4.02 430 452 470 486 4.99 5.11
0.01 410 474 514 543 5.66 5.85 6.01 6.15 6.27
18 0.05 2.97 3.61 4.00 428 449 467 482 4.96 5.07
0.01 4.07 470 5.09 538 560 579 594 6.08 6.20
19 005 296 359 398 425 447 465 479 492 5.04
0.01 4.05 467 505 533 555 573 589 6.02 6.14
20 0.05 295 358 396 423 445 462 477 490 5.01
0.01 4.02 4.64 5.02 529 5.51 5.69 5.84 5.97 6.09
24 0.05 292 353 390 417 437 454 468 4.81 4.92
0.01 3.96 4.55 4.91 517 537 554 5.69 5.81 5.92
30 005 289 349 385 410 430 446 460 472 4.82
0.01 3.89 445 480 505 524 540 554 5.65 5.76
40 0.05 286 344 379 404 423 439 452 463 4.73
0.01 3.82 437 470 493 5.11 5.26  5.39 5.50 5.60
60 0.05 283 340 374 398 416 4.31 4.44 455 4.65
0.01 376 428 459 482 499 513 525 5.36 5.45
120 005 280 336 3.68 392 410 424 436 4.47 4.56
0.01 3.70 4.20 4,50 4.7 4.87 5.01 512 5.21 5.30
o 0.05 277 3.31 3.63 3.86 4.03 417 429 439 447
0.01 3.64 412 440 460 476 488 499 5.08 5.16

Source: Data from E.S. Pearson and H.O. Hartley, Biometricka Tables for Statisticians, © 1966, Cambridge University Press;
and Harter, Tables of Range and Studentized Range, Annals of Mathematical Studies, Vol. 31, pp. 1122-1147.
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0.2 0.1 0.05 0.02 0.01 0.001
df (0.1) (0.05) (0.025) (0.01) 0.005 0.0005
3 0.687 0.805 0.878 0.934 0.959 0.991
4 0.608 0.729 0.811 0.882 0.917 0.974
5 0.551 0.669 0.754 0.833 0.875 0.951
6 0.507 0.621 0.707 0.789 0.834 0.925
7 0.472 0.582 0.666 0.750 0.798 0.898
8 0.443 0.549 0.632 0.715 0.765 0.872
9 0.419 0.521 0.602 0.685 0.735 0.847
10 0.398 0.497 0.576 0.658 0.708 0.823
11 0.380 0.476 0.553 0.634 0.684 0.801
12 0.365 0.458 0.532 0.612 0.661 0.780
13 0.351 0.441 0.514 0.592 0.641 0.760
14 0.338 0.426 0.497 0.574 0.623 0.742
15 0.327 0.412 0.482 0.558 0.606 0.725
16 0.317 0.400 0.468 0.543 0.590 0.708
17 0.308 0.389 0.456 0.529 0.575 0.693
18 0.299 0.378 0.444 0.516 0.561 0.679
19 0.291 0.369 0.433 0.503 0.549 0.665
20 0.284 0.360 0.423 0.492 0.537 0.652
21 0.277 0.352 0.413 0.482 0.526 0.640
22 0.271 0.344 0.404 0.472 0.515 0.629
23 0.265 0.337 0.396 0.462 0.505 0.618
24 0.260 0.330 0.388 0.453 0.496 0.607
25 0.255 0.323 0.381 0.445 0.487 0.597
26 0.250 0.317 0.374 0.437 0.479 0.588
27 0.245 0.311 0.367 0.430 0.471 0.579
28 0.241 0.306 0.361 0.423 0.463 0.570
29 0.237 0.301 0.355 0.416 0.456 0.562
30 0.233 0.296 0.349 0.409 0.449 0.554
40 0.202 0.257 0.304 0.358 0.393 0.490
50 0.181 0.231 0.273 0.322 0.354 0.443
60 0.165 0.211 0.250 0.295 0.325 0.408
80 0.143 0.183 0.217 0.257 0.283 0.357
100 0.128 1.164 0.195 0.230 0.254 0.321
120 0.117 0.150 0.178 0.210 0.232 0.294
140 0.108 0.139 0.165 0.195 0.216 0.273
160 0.101 0.130 0.154 0.183 0.202 0.256
180 0.095 0.122 0.146 0.172 0.190 0.242
200 0.091 0.116 0.138 0.164 0.181 0.230
300 0.074 0.095 0.113 0.134 0.148 0.188
400 0.064 0.082 0.098 0.116 0.128 0.164
500 0.057 0.073 0.088 0.104 0.115 0.146

Source: Copyright © Dr. Victor Bissonnette.



320 ArprenDIX B StATISTICAL TABLES

Table B-6 Critical Values of x? Distribution

Two-Tailed Testing /(One-Tailed Testing)

df 0.10 0.05 0.02 0.01 0.001

0.05 0.025 0.01 0.005 0.0005

1 2.706 3.841 5.412 6.635 10.827
2 4.605 5.991 7.824 9.210 13.815
3 6.251 7.185 9.837 11.345 16.268
4 7.779 9.488 11.668 13.277 18.465
5 9.236 11.070 13.388 15.086 20.517
6 10.645 12.592 15.033 16.812 22.457
7 12.017 14.067 16.622 18.475 24.322
8 13.362 15.507 18.168 20.090 26.125
9 14.684 16.919 19.679 21.666 27.877
10 15.987 18.307 21.161 23.209 29.588
11 17.275 19.675 22.618 24.725 31.264
12 18.549 21.026 24.054 26.217 32.909
13 19.812 22.362 25.742 27.688 34.528
14 21.064 23.685 26.873 29.141 36.123
15 22.307 24.996 28.259 30.578 37.697
16 23.542 26.296 29.633 32.000 39.252
17 24.769 27.587 30.955 33.409 40.790
18 25.989 28.869 32.346 34.805 42.312
19 27.204 30.144 33.687 36.191 43.820
20 28.412 31.410 35.020 37.566 45.315
21 29.615 32.671 36.343 38.932 46.797
22 30.813 33.924 37.659 40.289 48.268
23 32.007 35.172 38.968 41.638 49.728
24 33.196 36.415 40.270 42.980 51.178
25 34.382 37.652 41.566 44.314 52.620
26 35.563 38.885 42.856 45.642 54.052
27 36.741 40.133 44.140 46.963 55.476
28 37.916 41.337 45.419 48.278 56.893
29 39.087 42.557 46.693 49.588 58.302
30 40.256 43.733 47.962 50.892 59.703

Source: Copyright © Dr. Victor Bissonnette.
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N LeftS p Right S N LeftS Jo) Right S
1 0 0.5000 1 4 0.1938 8
2 0 0.2500 2 5 0.3872 7
1 0.7500 1 6 0.6128 6
3 0 0.1250 3 13 0 0.0001 13
1 0.5000 2 1 0.0017 12
4 0 0.0625 4 2 0.0112 11
1 0.3125 3 3 0.0461 10
2 0.6875 2 4 0.1334 9
5 0 0.0312 5 5 0.2905 8
1 0.1875 4 6 0.5000 7
2 0.5000 3 14 0 0.0000 14
6 0 0.0156 6 1 0.0009 13
1 0.1094 5 2 0.0065 12
2 0.3438 4 3 0.0287 11
3 0.6562 3 4 0.0898 10
7 0 0.0078 7 5 0.2120 9
1 0.0625 6 6 0.3953 8
2 0.2266 5 7 0.6047 7
3 0.5000 4 15 0 0.0000 15
8 0 0.0039 8 1 0.0005 14
1 0.0352 7 2 0.0037 13
2 0.1445 6 3 0.0176 12
3 0.3633 5 4 0.0592 11
4 0.6367 4 5 0.1509 10
9 0 0.0020 9 6 0.3036 9
1 0.0195 8 7 0.5000 8
2 0.0898 7 16 0 0.0000 16
3 0.2539 6 1 0.0003 15
4 0.5000 5 2 0.0021 14
10 0 0.0010 10 3 0.0106 13
1 0.0107 9 4 0.0384 12
2 0.0547 8 5 0.1051 11
3 0.1719 7 6 0.2272 10
4 0.3770 6 7 0.4018 9
5 0.6230 5 8 0.5982 8
11 0 0.0005 11 17 0 0.0000 17
1 0.0059 10 1 0.0001 16
2 0.0327 9 2 0.0012 15
3 0.1133 8 3 0.0064 14
4 0.2744 7 4 0.0245 13
5 0.5000 6 5 0.0717 12
12 0 0.0002 12 6 0.1662 11
1 0.0032 11 7 0.3145 10
2 0.0193 10 8 0.5000 9
3 0.0730 9

continues
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Table B-7 continued

N LeftS P Right S N LeftS P Right S

18 0 0.0000 18 6 0.0835 13
1 0.0001 17 7 0.1796 12
2 0.0007 16 8 0.3238 11
3 0.0038 15 9 0.5000 10
4 0.0154 14 20 0 0.0000 20
5 0.0481 13 1 0.0000 19
6 0.1189 12 2 0.0002 18
7 0.2403 11 3 0.0013 17
8 0.4073 10 4 0.0059 16
9 0.5927 9 5 0.0207 15

19 0 0.0000 19 6 0.0577 14
1 0.0000 18 7 0.1316 13
2 0.0004 17 8 0.2517 12
3 0.0022 16 9 0.4119 11
4 0.0096 15 10 0.5881 10
5 0.0318 14

Note: Entries labled P in the table are the cumulative probability from each extreme to the value of S, for a given n when
p = 0.5. Left tail probabilities are given for S = 0.5n, and right tail for S = 0.5n.

Source: Reprinted from National Bureau of Standards.
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Table B-8 Critical Values for 2Ry for the Mann-Whitney Wilcoxon Rank Sum Test

ny = 3 n; =4
ny 0.005 0.01 0.025 0.05 ny 0.005 0.01 0.025 0.05
3 6-15 4 10-26  11-25
4 6-18 5 10-30 11-29 12-28
5 6-21 7-20 6 10-34 11-33  12-32  13-31
6 6-23 8-22 7 10-38 11-37 13-35 14-34
7 6-27 7-26 8-25 8 11-41 12-40 14-38  15-37
8 6-30 8-28 9-27 9 11-45 1343 14-42 16-40
9 6-33 7-32 8-31 10-29 10 12-48 13-47 1545 17-43
10 6-36 7-35 9-33 10-32 11 12-52 14-50 16-48 18-46
11 6-39 7-38 9-36 11-34 12 13-556 15-563  17-51 19-49
12 -4 8-40 10-38 11-37 13 13-59 15-57 18-54  20-52
13 7-44 8-43 10-41 12-39 14 14-62 16-60 19-57  21-55
14 7-47 8-46 11-43  13-41 15 1565 17-63 20-60 22-58
15 8-49 9-48 11-46 13-44
n;=5 ny; = 6
ny 0.005 0.01 0.025 0.05 n,  0.005 0.01 0.025 0.05
5 15-40 16-39 17-38 19-36 6 23-65 24-54 26-52  28-50
6 16-44 17-43 18-42  20-40 7 24-60 25-59  27-57  29-55
7 16-49  18-47 20-45 21-44 8 25-65 27-63  29-61 31-59
8 17-53 19-51 21-49  23-47 9 26-70 28-68 31-65 33-63
9 18-57 20-55 22-53 24-51 10 27-75 29-73 32-70 35-67
10  19-61 21-59  23-57 26-54 11 28-80 30-78 34-74 37-71
11 20-65 22-63  24-61 27-58 12 3084 32-82 35-79 38-76
12 21-69 23-67 24-64 28-62 13 31-89 33-87 37-83  40-80
13 22-73  24-7 27-68  30-65 14 32-94 34-92 38-88 42-84
14 22-78 25-75 28-72  31-69 15 33-99 36-96 40-92  44-88
15 23-82 56-79 29-76  33-72
n,=7 n;=8
n, 0.005 0.01 0.025 0.05 n, 0.005 0.01 0.025 0.05
7 32-73  34-71 36-69  39-66 8 43-93  45-91 49-87  51-85
8 34-78 35-77 3874 41-71 9 45-99 47-97 51-93  54-90
9 35-84 37-82 40-79 43-76 10 47105 49-103 53-99 56-96
10 37-89 39-87 42-84 45-81 11 49-111 51109 55-105 59-101
11 38-95 40-93 44-89 47-86 12 51-117 53-115 58-110 62-106
12 40-100 42-98 46-94 49-91 13 53-123 56-120 60-116 64-112
13 41-106 44-103  48-99 52-95 14 54-130 58-126 62-122 67-117
14 43-111 45109 50-104 54-100 15 56-136  60-132 65-127 69-123
15 44117 47-114 52-109 56-105

continues
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Table B-8 continued

ny; = 9 ny; = 10

n,  0.005 0.01 0.025 0.05 np 0.005 0.01 0.025 0.05

9 56-115 59-112 62-109 66-105 10 71139 74-136 78-132 82-128
10 58-122 61-119 65-115 69-111 11 73147 77143 81-139 86-134
11 61-128 63-126 68-121 72-117 12 76-154 79-151 84-146 89-141
12 63-135 66-132 71-127 75-123 13 79-161 82-158 88-152 92-148
13 65-142 68-139 73-134 78-129 14 81-169 85-165 91-159 96-154
14 67-149 71-145 76-140 81-135 15 84-176 88-172 94-166 99-161

15 69-156 73-152 79-146 84-141

ny; = 11 ny; = 12
n, 0.005 0.01 0.025 0.05 ny 0.005 0.01 0.025 0.05
11 87-166  91-162 96-157 100-153 12 105-195 109-191 115-185 120-180
12 90-174 94-170 99-165 104-160 13 109-203 113-199 119-193 125-187
13 93-182 97-178 103-172 108-167 14 112-212 116-208 123-201 129-195
14 96-190 100-186 106-180 112-174 15 115-221 120-216 127-209 133-203

15 99-198 103-194 110-187 116-181

n; =13 n, =14
n, 0005 001 0025 005 n, 0005 001 0025 005
13 125-166 130-221 136-215 142-209 14 147-259 152-254 160-246 166-240
14 120-235 134-230 141-223 147-217 15 151-269 156-264 164-256 171-249

15 133-244 138-239 145-232 152-225

n1=15

n, 0.005 0.0871 0.025 0.05

15 171-294 176-289 184-281 192-273

Source: E.W. Minium, Statistical Reasoning in Psychology and Education, pp. 549-550. © Reprinted by permission of John
Wiley & Sons, Inc.
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Ny, Ny, N3 0.100 0.050 0.020 0.0101 0.001
2,2,2 4.571
3,21 4.286
3,2,2 4.500 4.714
3,31 4.571 5.143
3,3,2 4.556 5.361 6.250
3,3,3 4.622 5.600 6.489 7.200
4,2,1 4.500
4,2,2 4.458 5.333 6.000
4,3,1 4.056 5.208
4,3,2 4.511 5.444 6.144 6.444
4,3,3 4.709 5.791 6.564 6.745
4,4,1 4.167 4.967 6.667 6.667
4,4,2 4.555 5.455 6.600 7.036
4,4,3 4.545 5.598 6.712 7.144 8.909
4,4,4 4.654 5.692 6.962 7.654 9.269
52,1 4.200 5.000
5,22 4.373 5.160 6.000 6.533
5,3,1 4.018 4.960 6.044
53,2 4.651 5.251 6.124 6.909
53,3 4.533 5.648 6.533 7.079 8.727
54,1 3.987 4.985 6.431 6.955
5,4,2 4.541 5.273 6.505 7.205 8.591
5,4,3 4.549 5.656 6.676 7.445 8.795
54,4 4.668 5.657 6.953 7.760 9.168
5, 5,1 4.109 5.127 6.145 7.309
55,2 4.623 5.338 6.446 7.338 8.938
55,3 4.545 5.705 6.866 7.578 9.284
55,4 4.523 5.666 7.000 7.823 9.606
55,5 4.560 5.780 7.220 8.000 9.920

Note: Each table entry is the smallest value of the Kruskal-Wallis Q such that its right-tail probability is less than or equal
to the value given on the top row for k = 3, each sample size less than or equal to 5. For k > 3, right-tail probabilities for Q
are found from Table B-6 with kK — 1 degrees of freedom.

Source: Adapted with permission from R.L. Iman, D. Quade, & D.A. Alexander, Exact Probability Levels for the Kruskal-
Wallis Test, in Selected Tables in Mathematical Statistics, Vol. 3, Institute of Mathematical Statistics, ed., pp. 329-384, © 1975,

American Mathematical Society.






APPENDIX C

Frequency Distribution of
Discharges by DRG, Critical Care
Hospital, 2004: An Index to the

Number of Cases by DRG

DRG Frequency DRG Frequency  DRG Frequency
001 41 046 3 094 5
002 23 047 4 096 7
004 2 049 9 097 4
006 1 050 3 099 3
007 8 051 2 100 2
009 3 053 9 101 8
010 19 055 2 102 3
011 5 057 2 103 2
012 10 063 31 104 21
013 10 064 11 105 33
014 38 065 3 106 11
015 12 066 1 107 28
016 1 067 1 108 17
017 1 068 3 109 44
018 7 069 4 110 33
019 8 073 2 111 7
020 7 075 76 112 5
021 6 076 35 113 7
023 2 077 3 115 8
024 28 078 22 116 45
025 24 079 26 117 3
026 1 080 1 118 1
027 5 082 47 120 6
028 6 083 2 121 14
029 5 084 2 122 10
032 1 085 22 123 9
034 10 086 3 124 84
035 4 087 14 125 41
036 1 088 27 126 3
037 3 089 77 127 61
040 1 090 4 128 2
042 3 091 1 130 36
044 4 092 8 131 6
045 3 093 2 132 17

continues
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DRG Frequency DRG Frequency @ DRG Frequency
133 14 185 11 253 7
134 12 188 34 254 1
135 1 189 10 256 5
136 2 191 23 257 15
137 1 192 2 258 12
138 42 193 4 260 1
139 18 197 6 261 1
140 3 198 1 262 1
141 8 199 6 263 2
142 3 200 3 264 4
143 26 201 3 265 4
144 50 202 45 266 2
145 10 203 28 268 4
146 5 204 41 269 9
147 4 205 22 270 2
148 59 206 1 271 3
149 14 207 11 272 3
150 13 208 3 274 4
151 6 209 17 275 1
152 2 210 11 276 4
153 5 211 8 277 27
154 27 212 1 278 15
155 11 213 6 280 6
157 9 216 13 281 5
158 3 217 8 282 1
159 13 218 11 283 6
160 19 219 28 284 3
161 5 220 1 286 5
162 1 223 2 287 2
164 1 224 3 288 75
165 7 225 3 289 11
166 3 226 6 290 17
167 21 227 8 292 2
168 7 228 2 293 1
169 3 229 3 294 14
170 10 231 4 295 12
171 4 233 17 296 22
172 36 234 5 297 8
173 9 236 1 299 2
174 41 238 4 300 6
175 7 239 15 301 8
176 11 240 16 302 36
177 5 241 3 303 27
178 1 242 2 304 25
179 42 243 23 305 31
180 24 244 4 308 3
181 17 247 6 310 5
182 43 248 5 311 2
183 21 249 1 313 1
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DRG Frequency DRG Frequency = DRG Frequency
315 9 388 69 455 1
316 77 389 11 460 2
318 5 390 61 461 4
319 1 391 443 462 168
320 26 392 3 463 1
321 3 394 3 466 1
322 1 395 59 467 20
323 6 397 7 468 28
324 1 398 15 472 1
325 2 399 4 473 25
326 1 353 42 475 61
331 46 400 1 477 12
332 5 401 4 478 39
334 4 402 3 479 25
335 11 403 44 480 5
336 1 404 6 481 13
337 1 357 6 482 52
338 1 406 5 483 51
341 3 407 4 485 6
344 1 408 11 486 9
346 1 409 1 487 7
352 2 410 148 489 18
354 6 413 8 490 7
355 4 415 29 492 28
356 4 416 31 493 14
357 6 418 43 494 1
358 21 419 4 495 2
359 63 421 5 496 1
360 3 423 14 498 9
365 4 424 1 499 3
366 5 425 7 500 12
368 7 426 23 503 2
369 5 427 4 504 2
370 116 428 1 506 2
371 96 429 13 507 1
372 86 430 417 509 2
373 337 434 2 510 8
374 27 435 5 511 7
376 11 439 2 512 5
377 2 440 7 515 24
378 4 442 13 516 21
379 28 443 7 517 26
380 3 444 1 518 22
381 7 445 4 519 2
383 83 449 17 520 4
384 22 450 4 521 10
385 26 451 2 523 10
386 20 452 18 524 10
387 1 453 2 525 1

continues
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DRG Frequency DRG Frequency @ DRG Frequency
526 33 532 4 537 7
527 71 533 11 538 5
528 4 534 21 539 5
529 1 535 8 540 4
531 4 536 10 Total 6824



APPENDIX D

Answers and Solutions

CHAPTER 1

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
See glossary (Appendix A).

3. Outline the procedure for age-adjusting crude mortality rates by the direct stan-
dardization method.
To adjust the crude mortality rate by age, first calculate the age-specific death rate
(ASDR) for each age group in the two populations that are being compared. Second,
combine the two populations by age groups. Third, multiply the ASDR for each popula-
tion age group times the combined population total for each group. This results in an ex-
pected number of deaths for each age group for each population. Finally, sum the ASDRs
for each age group in each population; this results in the age-adjusted mortality rate for
each group.

5. Describe the differences between neonatal mortality rate, post-neonatal mortality
rate, and infant mortality rate.
The neonatal mortality rate is the number of deaths of newborns under 28 days of age
for a given time period compared to the number of live births for the same time period.

The post-neonatal mortality rate is the number of deaths of infants age 28 days up to and
not including one year of age for a given time period compared to the number of live
births for the same time period.

The infant mortality rate is the number of deaths of infants under one year of age for a
given time period compared to the number of live births for the same time period. The
infant mortality rate combines the neonatal and post-neonatal mortality rates.
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APPENDIX D ANSWERS AND SOLUTIONS

MULTIPLE CHOICE

1.b

[(20 + 55 + 155)/(15,000 + 17,000 + 6,000) X 1,000 = 6.1 per 1,000

PROBLEMS

1. Review the hypothetical data on deaths in the MICU in Table 1-A-1 and answer the
guestions that follow.

a.

What is the ratio of male deaths to female deaths?

There were a total of 44 MICU deaths: 24 men and 20 women; the ratio is 24:20 or
6:5. The interpretation is that for every six male deaths there were five female deaths.
What proportion of the patients who died were admitted from the Emergency
Department (ED)? What proportion were transfers from other hospitals?

Seven of the patients who died were admitted from the ED; the proportion of patient
who were admitted from the ED is 7/44 or .16.

Eleven of the patients who died were transfers from other hospitals; the proportion of
patient who were transfers from other hospitals is 11/44 or .25.

The total number of patients discharged from DRG 475 was 61. What is the case
fatality rate for DRG 475?

Fifteen patients who died in the MICU fell in DRG 475. The case fatality rate is:

(15/61) X 100 = 24.6%

. The total number of patients discharged from DRG 483 was 51. What is the case

fatality rate for DRG 4837
Five patients who died in the MICU fell in DRG 483. The case fatality rate is:

(5/51) X 100 = 9.8%

What is the relative risk of death for patients discharged from DRG 475 com-
pared to discharges from DRG 483?

245 _
098

The risk of death is 2.5 times greater for DRG 475 than DRG 483.

2.5
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3. Review the data in Table 1-A-3 and answer the questions that follow.

Table 1-A-3 Ohio AIDS Cases by Age, Race, and Sex,
as of June 30, 2003; U.S. AIDS Cases 1981-1999

Demographics Total Ohio" Total U.S.2
Age

<13 96 8,718
13-19 72 3,725
20-24 331 25,904
25-29 776 97,676
30-39 4,686 329,066
40-49 5,362 190,087
50-64 2,254 68,196

65+ 217 10,002
Subtotal 13,794 733,374
Race/Ethnicity
White 6,943 318,354
Black 5,742 272,881
Hispanic 642 133,703
Other 74 7,479
Unknown 393 957
Subtotal 13,794 733,374
Sex
Male 10,766 609,329
Female 2,634 124,045
Unknown 394
Subtotal 13,794 733,374

'Source: Ohio HIV/AIDS Statistical Summary, HIV Infection and AIDS
Cases Diagnosed through June 2003, Ohio Department of Health,
www.odh.state.oh.us.

2US DHHS, Public Health Service, CDC, National Center for HIV, STD,
and TB Prevention, AIDS Public Information Data Set, CDC WONDER
on-line database, wonder.cdc.gov.

a. What is the male-to-female ratio for AIDS in Ohio? In the United States?
The male to female ratio in Ohio is 10,766 to 2,634 or 4.1 to 1.

The male to female ratio in the United States is 609,329 to 124,045 or 4.9:1.
b. Out of the total number of AIDS cases in Ohio, what proportion are women? Of
the total cases in the United States, what proportion are women?
Proportion of cases in Ohio that are known to be women is
2,634/(2,634 + 10,766 + 394) = .19

Proportion of cases in the US that are women is 124,045/(124,045 + 609,329) = .20
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c. What proportion of the total AIDS cases in Ohio are ages 30 to 39? What pro-
portion in the United States are ages 30 to 39?
The proportion of cases in Ohio that fall into the age group 30 to 39 is
4,686/13,794 = .34.

The proportion of cases in the US that fall into the age group 30 to 39 is
329,066/733,374 = .45.

d. Calculate the proportion of AIDS cases in Ohio by race. Calculate the proportion
of AIDS cases in the United States by race.

Race/Ethnicity Ohio p us p*

White 6,943 .50 318,354 .43
Black 5,742 42 272,881 37
Hispanic 642 .04 133,703 18
Other 74 .01 7,479 .01
Unknown 393 .03 957 .001

*Does not total to 1.0 due to rounding

e. How do the above ratios and proportions, Ohio versus the United States,
compare?
The ratio of males to females is slightly higher in the United States than in Ohio. The
proportion of cases that fall in the 30-39 age group is much greater in the United
States than in Ohio, 45% versus 34%. The proportion of whites and blacks affected is
greater in Ohio than in the United States as a whole. This is probably because the
overall racial proportions in the state of Ohio differ from the total US population pro-
portions.
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5. Calculate the odds ratio for the data in Table 1-13. Interpret the results.

Table 1-13 Relative Risk of Death Due to Malig-
nancies, Women versus Men Aged 65+, State of
Michigan, 2001

Death Due to Malignancies

Sex Yes No Total
Men 7,153 21,507 28,660
@ (b) (a+b)

Women 6,565 28,890 35,455
() (d) (c+4d

Risk of illness among men:

al(a + b) = 7,153/(7,15 + 21,507) = 0.2496
Risk of illness among women

c/(c + d) = 6,565/(6,565 + 28,890) = 0.1852
Risk ratio, men to women: .2496/1852 = 1.34
Thus, the risk of death due to malignancy
among men aged 65+ is 1.3 times greater than
the risk of death due to malignancy in women in
the same age group.

Source: Data from Centers for Disease Control and Preven-
tion, CDC WONDER database, wonder.cdc.gov.

_ax d
bXc

_ 7,153 X 28,890 _ 206,650,170 _
21,507 X 6,565 141,193,455

Odds ratio

1.46

The odds of dying from a malignancy is almost 1.5 times greater in men than women
in the state of Michigan.
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7. The overall mortality rate for patients who have had a cerebrovascular accident
(CVA) is 15.8% at City General Hospital. You have been asked to compare the hos-
pital’s mortality rate to that of the state. Using the data provided in Table 1-A-6,
calculate the age-adjusted death rate and the standard mortality ratio (SMR) for
the hospital, using the indirect method of standardization. Explain the results.

Table 1-A-6 Mortality Rates for CVAs, State versus City General Hospital

Severity of State Mortality = Hospital Discharges

lliness Rate for CVA Observed Deaths  Expected Deaths
1 4.2 55 2 2.31
2 5.9 116 8 6.84
3 7.8 195 20 15.21
4 20.9 147 29 30.72
5 34.6 62 32 21.45
575 1 76.53

Observed mortality rate is (91 X 100)/575 = 15.8%
Expected mortality rate is (76.53 X 100)/575 = 13.3%.

SMR = Observed Compl_lcat_lon Rate _ .158 _ 119
Expected Complication Rate 133

After indirect standardization, the mortality rate for CGH is 19% higher than the ex-
pected mortality rate.
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QUESTIONS (all data gathered from the state of Utah)
1. For the diagnosis of acute myocardial infarction, ICD-9-CM category 410:

a. Prepare a bar graph that displays the number of deaths due to AMI by year, 1998
through 2002.

Deaths Due to AMI, 1998-2002

3,600

3,550

3,500 B

3,450 1 ] u

3,400 — 1 ] u

Number of deaths

3,350 [ — ] — ] B

3,300
1998 1999 2000 2001 2002

Deaths 3,380 3,404 3,514 3,450 3,540

b. Prepare a line graph that displays the number of deaths by gender for the years
1998 through 2002. What are your conclusions?

Deaths Due to AMI by Sex, 1998—-2002

3,000
2,500 — e E—
2
£ 2,000
(]
o
© 1,500
(0]
= S e =
500
0
1998 1999 2000 2001 2002
—— Men 2,311 2,427 2,429 2,324 2,400
~@— Women 1,069 977 1,084 1,126 1,140
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In raw numbers, there are more men who die as a result of an AMI than women. This
is true for each year 1998-2002.

c. Prepare a table that displays the number of deaths due to AMI by age group in
the state of Utah. Use the table to prepare a bar graph of the same information.

Deaths Due to AMI by Age

Group 2002

Age Group Deaths
18-19 1
20-24 3
25-34 20
35-44 157
45-54 570
55-64 762
65-74 843
75+ 1,184

3,540

Deaths Due to AMI by Age Group, 1998-2002

1,400

1,200

1,000 M

800 ] I

600 m m I

400 m m m I

200 u u u 1

0
18-19 [20-24 |25-34 [35-44 [45-54 |55-64 |65-74 | 75+

| |:| Number of Deaths 1 3 20 157 570 762 843 | 1,184
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d. Prepare a bar graph that displays the average length of stay by gender for the
years 1992 through 2002. What are your conclusions after reviewing the data?

Average Length of Stay by Sex, 1992—-2002

14

12

10

Number of deaths

1992 [ 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002

-Women 574 | 514 |13.1 | 553 | 561 | 542 | 505 | 505 | 473 | 4.69 | 4.87
|:|Men 6.56 | 6.25 | 6.14 | 555 | 516 |4.83 | 484 | 482 | 453 | 451 | 454

In general, the average length of stay for women slightly exceeds that for men. There
appears to be an aberration in 1994 which requires further investigation.

e. Prepare a line graph that displays the median charges by year, 1992 through
2002. What does the graph indicate?

Median Charges, AMI, by Year

$25,000

$20,000

$15,000

$10,000

Median Charges

$5,000

‘92 | 93 | '94 | '95 | '96 | '97 | '98 | '99 | '00 | '0O1 | 'O2

Median Charges $ [10,255|11,014|12,538|13,425|14,508|15,393(15,776(18,689|18,222|19,354/|21,393

The median charges have increased each year in the time frame 1992-2002. The
sharpest increase occurred in the time period 1998-1999.
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3. Determine the number of patient discharges with pathological fractures, ICD-9-CM
code733.1, by year, 1998 through 2002, and by gender. You are interested in patients
aged 65 years and over. Prepare a line graph displaying the number of discharges by
year and by gender. Discuss your findings.

Pathological Fractures, Age 65+, by Sex

1998-2002
180
/.—_.\..4._
160
140 ./
120
100
80
60 D/D\D\D/D
40
20
0
1998 1999 2000 2001 2002
-l Female 149 165 166 160 165
- Male 51 59 54 46 53

For the time frame, more women are affected with pathological fractures than men. This
may be because women are more likely to experience this condition following

menopause.
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5. For ICD-9-CM code 185, for the years 1998 through 2002:
a. Prepare a bar graph or pie chart, by third-party payer, of men, aged 45 and older,
discharged with a diagnosis of prostate cancer.

Prostate Cancer Patient Discharges, Ages 45+, by Payor

341

1998-2002
60
50 [
40
30 [
20 [
10
0
1998 1999 2000 2001 2002
[] Medicare 52.12% 52.40% 52.94% 54.04% 51.06%
[] other Govt 7.65% 5.16% 5.53% 5.11% 4.35%
B Biue Cross 8.22% 10.20% 9.41% 9.89% 12.63%
B other comm 12.18% 9.73% 9.29% 5.85% 5.41%
= Mngd Care 19.83% 22.51% 22.82% 25.11% 26.54%
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b. Prepare a bar graph that displays the number of men, by age group, discharged
with prostate cancer.

Prostate Cancer Patient Discharges by Age Group

1998-2002
450
400
350

In|
300 -
250 _.D------U ------ 0=="
4"—

200 Lr

150 7{"_‘

100 .—_—.\./I\.
50

1998 1999 2000 2001 2002
== 45-54 67 75 56 91 82
= 55-64 215 270 281 277 315
——65-74 336 373 355 400 378
i 75+ 118 138 163 174 173

c. Discuss your findings.
It appears that the number of patients diagnosed with prostate cancer is increasing in
each age category. The greatest number of cases is in the age 65-74 age group.

CHAPTER 2

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
See glossary (Appendix A)

3. What questions should be answered in the title of a table, chart, or graph?
The title for a table, chart, or graph should be as complete as possible. It should answer
the following questions:

» What are the data? (counts, percentages, etc.)
» To whom does the data relate? (males and females with a certain condition, diseases
by race, etc.)
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* Where are the data from? (hospital, community, state, county, etc.)
* When? To what time frame does the data apply? (day, week, month, year)

5. Describe the differences between a stacked bar chart and a 100% component bar
chart.
In a stacked bar chart, the segments of the bar for each data category are stacked like
building blocks on top of one another to form a single bar. The bar represents the total
number of cases in the data category; the segments of the bar represent the frequency of
certain types of cases within the category.

In a 100% component bar chart, all bars in the display are of the same height—each rep-
resenting 100% of the cases in the category. The bar is divided into segments that repre-
sent the percentage of certain types of cases within categories. For example, a 100%
component chart may display types of cancer by site; the segments within each bar may
represent the percentage of males and females affected by that particular type of cancer.

The stacked bar chart displays frequencies; the 100% component bar chart displays
percentages.

MULTIPLE CHOICE

1. a. bar graph
3. b. percentage of discharges by third-party payer

5. a. bar chart
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PROBLEMS

Prepare the appropriate charts and graphs for the following problems. Include a title for each

and identify the data source when indicated.

1. The admissions data in Table 2-A-1 compare actual admissions by hospital service
with the budgeted number of hospital admissions for the month of January for Crit-
ical Care Hospital. Using computer graphic software, construct a bar chart that
compares budgeted admissions with actual admissions. Write a short summary of

the results.

Budgeted vs. Actual Admissions by Service

Critical Care Hospital

January 200X
900
800
700
600
500
400
300
200
0 [
Medicine | Surgery | OB/Gyn |Psychiatry| Physical Other | Newborn
Medicine &  Adult
Rehab
[ Budgeted Admissions 769 583 440 99 57 178 312
= Actual Admissions 728 578 402 113 48 191 294

Actual admissions did not quite meet the budgeted projections except for Psychiatry Ser-

vice and Other Adult. The differences do not appear to be significant.
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3. Table 2-A-3 contains length-of-stay data by service for the month of January for
Critical Care Hospital. Construct a stacked bar chart that compares actual average
length of stay with the budgeted average length of stay.

Critical Care Hospital
Budgeted vs. Actual LOS
January 200X

60-
Py
50-
404
304
20-
@ i = ¥
0 - -
Medicine Surgery OB/GYN | Psychiatry P;r}'glﬁaélh'\égdlc Other Adult|  Newborn
CActual 6.09 6.98 2.91 10.82 27.46 3.6 5.55
.Budgeted 6.39 7.23 3.22 11.56 22.98 3.93 4.97

5. Exhibit 2-A-1 displays the lengths of stay for 80 patients at the Critical Care Can-
cer Research Institute. Construct a histogram of these data.

20
18
16
14
12
10

o N b O

Histogram of Length of Stay for 80 Patients

Critical Care Cancer Research Institute

5-6

7-8 9-10 11-12 13-14 15-16 17-18 19-20
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7.

Review the data in Table 2—4. Determine the percentage of total male and female
cancer cases for each site. Prepare a bar chart to display your results.

Incidence of Cancer Cases for Selected Primary Sites, by Sex, 1997-2001

45%
40% 1
35% am— |
30% N
25% -+ N
20% - N
15% A N
10% A N
5%- N
7 Oral & Pharynx Liver Pancreas Lung & Hodgkin's | Colon &
Bronchus Lymphoma | Rectum
m Male 9.17% 5.17% 6.78% 42.84% 2.05% 33.99%
O Female 5.44% 2.95% 8.38% 41.23% 2.03% 39.97%
CHAPTER 3

KNOWLEDGE QUESTIONS

1.

Define key terms listed at the beginning of this chapter.
See glossary (Appendix A).

. Why are validity and reliability requirements of accuracy in the measurement

process?

To have confidence in the data that we collect, we must assess the validity and reliabil-
ity of the measures. Validity tells us that we are truly measuring the characteristic or prop-
erty of interest, and reliability tells us that the measurement results are consistent over
time or repeated measures.

You weighed your dog this morning on your bathroom scale. His weight was 15 Ib.
You decided to weigh him again in the evening, and his weight had increased to 20
Ib. This is most likely what type of measurement error? Explain your answer.

This is a problem with aspects of reliability. In this case, it is a matter of stability, or test-
retest reliability. If we obtain a different result each time a property is measured, we can-
not be confident in our results.



7.

APPENDIX D ANSWERS AND SoLUTIONS 347

Relate the importance of determining the sensitivity, specificity, and predictive
value of a screening measure.

Sensitivity, specificity, and predictive value further assist us in evaluating the validity of
a measure. Sensitivity is the extent to which the measure identifies the characteristic
when it is truly present. If the instrument is not sensitive, it will not detect the character-
istic of interest when it is present. Specificity is the extent to which a measure excludes
the characteristic of interest when it is truly absent. An instrument that is non-specific
will falsely detect the characteristic of interest when it is not present. A pilot test is con-
ducted to assess the sensitivity and specificity of an instrument.

Predictive value is how well the instrument measures the characteristic of interest. For
example, if there are 25 patients who suffer a diabetic coma, and the measure correctly
identifies 15 of the cases, the predictive validity is 60%. That is, it correctly measures the
characteristic of interest 60% of the time.

. What is the difference between a discrete variable and a continuous variable?

Discrete variables have gaps between successive measures, or the gaps between measures
are not equal. Discrete variables fall on the nominal and ordinal scales of measurement.
We cannot multiply or divide variables that are discrete. In contrast, continuous variables
fall on the interval and ratio scales of measurement. The term continuous implies that
there are no gaps between successive numbers. Results of these measures may be frac-
tional, such as a weight of 125.3 Ibs. We can use multiplication and division with con-
tinuous variables.

MULTIPLE CHOICE

11.

T 2 T 2

1
3
5.
7
9

nominal
ordinal
interval

test-retest reliability

. a. age

e. all of the above

PROBLEMS

1.

The hospital readmission rate is often considered an indicator of an undesirable pa-
tient outcome. The quality improvement team is interested in reducing the number
of readmissions among patients discharged with a principal diagnosis of congestive
heart failure (CHF). The team believes that the high readmission rate is due to the
difficulty that these patients have in controlling the number of drugs that they typ-
ically take. The team believes that by improving patient/family education regarding



348  AprpENDIX D ANSWERS AND SOLUTIONS

drug administration, the readmission rate could be reduced. Thus, they have devel-
oped the screen “CHF patients taking three or more drugs” to identify these pa-
tients before discharge. To evaluate the effectiveness of the measure, the team
conducts a study on all CHF patients discharged the previous year. The results ap-
pear in Table 3-A-1:

Table 3-A-1 Readmissions of CHF Patients

CHF Patients
No. of Drugs
Administered Readmitted Not Readmitted Total
= 3 drugs 200 40 240
< 3 drugs 100 900 1,000
Total 300 940 1,240

a. Calculate the sensitivity, specificity, and predictive value for this measure.

Sensitivity =ala+c
= 200/(200 + 100)
= 0.67

Specificity =d/b+d
= 900/(40 + 900)
= 0.96

Predictive value = a/a + b
= 200/(200 + 40)
= 0.83

b. On the basis of your results, is this an effective measure? Why or why not?
Even though the measure results in a number of false positives, it may be a useful
measure for identifying this group of patients. There are few false negatives indicat-
ing good specificity (0.96) and fairly good predictive value (0.83).

3. At Werethebest Hospital, 34 Caesarean sections were performed during January
and at Weresosick Hospital, 54 Caesarean sections were performed. During Janu-
ary, Werethebest Hospital had 200 deliveries; Weresosick Hospital had 1,100 deliv-
eries. The national benchmark for the C-section rate is 15%.
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The head of obstetrics at Werethebest Hospital claims that their OB service pro-
vides better care than that provided at the rival hospital. Do you agree with this
assessment?

C-section rate at Werethebest Hospital = (34/200) X 100 = 17.0%
C-section rate at Weresosick Hospital = (54/1,100) X 100 = 4.9%

The C-section rate at Werethebest Hospital exceeds the national benchmark. The com-
parison should be made on the basis of the percentage of C-sections performed out of the
total number of deliveries rather than the actual number of C-sections.

. As part of the quality improvement team, you have prepared a report on acute my-
ocardial infarction (AMI) mortality, which is displayed in Table 3-A-2. You query
DRG 121, Circulatory Disorders with AMI and Cardiovascular (CV) complications,
Discharged Alive; DRG 122, Circulatory Disorders with AMI without CV Compli-
cations, Discharged Alive; and DRG 123, Circulatory Disorders with AMI, Expired.
You want to include only those cases where AMI is the principal diagnosis.

Table 3-A-2 Acute Myocardial Infarctions, DRGs 121, 122, and 123

Principal Diagnosis DRG 121 DRG 122 DRG 123
410.01 3 1 1
410.11 9 3 4
410.31 2 1 0
410.41 11 11 1
410.61 1 0 0
410.71 66 31 9
410.91 25 11 5
421.0 1 0 0
428.0 31 0 0
Total 119 58 20

a. Assess the report below for validity and reliability. What corrections should be
made to calculate the AMI mortality rate?
All diagnosis codes for the last two cases should be reviewed to determine if the cor-
rect principal diagnosis was assigned. If these two patients were admitted for condi-
tions other than AMI, they should be excluded from the analysis.

b. What is the AMI mortality rate?
Assuming that the latter two cases are excluded from the analysis, the AMI mortality
rate is calculated as:

AMI mortality rate = (20/(117 + 58 + 20) X 100 = 10.3%
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c. Review Table 3-A-3, which displays the average length of stay for each DRG.
What factors should also be considered when presenting the AMI mortality rate?
What is the net AMI mortality rate?

Table 3-A-3 Average Length of Stay (ALOS) and Numbers of
Patients with Length of Stay (LOS) Two Days or Less, DRGs 121,

122, and 123

DRG 121 DRG 122 DRG 123
ALOS 5.6 days 3.6 days 3.5 days
LOS = 2 days 26 18 10

The net AMI mortality rate may be a better reflection of the care provided by the hos-
pital as it corrects for deaths for which the hospital may not have adequate time to
treat the patient. The net mortality rate corrects for patients who died within 48 hours
of admission. The net mortality rate is almost half the gross mortality rate.

Net AMI Mortality Rate = (20 — 10)/([117 + 58 + 20] — 10) X 100 = 5.4%

CHAPTER 4

KNOWLEDGE QUESTIONS

1. Define key terms listed at the beginning of this chapter.
See glossary (Appendix A).

3. Compare and contrast the following measures of central tendency: mean, median,
and mode.
The mean is the arithmetic average of a frequency distribution. All observations in the
frequency distribution are used to calculate the mean; the mean is considered a non-
resistant statistic because it is influenced by the extreme values in the distribution. The
mean is appropriate for interval and ratio level data.

The median is the “middlemost” value in a frequency distribution. Fifty percent of the
observations in the distribution lie above the median and 50% lie below the median. The
median is considered a resistant statistic because it is not influenced by extreme values
in the distribution. The median is appropriate for ordinal, interval, and ratio level data.

The mode is the most frequently occurring value in a frequency distribution. The mode
is considered a resistant statistic because it is not influenced by extreme values in the dis-
tribution. A limitation of the mode is that a frequency distribution may have more than
one mode. A frequency distribution may be bimodal or multi-modal. The mode can fluc-
tuate widely from sample to sample. For nominal level data, the mode is the most fre-
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quently occurring category. The mode is the only measure of central tendency appropri-
ate for nominal level data. The mode may also be reported for ordinal, interval, and ratio
level data.

. Why do measures of central tendency and variation of ungrouped frequency distri-

butions differ from those of grouped frequency distributions?

Measures of central tendency and variation are calculated from each observation in
an ungrouped frequency distribution. Statistics calculated from an ungrouped fre-
guency distribution are more precise than statistics calculated from a grouped frequency
distribution.

In a grouped frequency distribution, the frequency distribution is divided into class in-
tervals. It is assumed that the observations are evenly distributed evenly throughout each
class interval—even though this may not be the case. Statistics calculated from a grouped
frequency distribution will vary depending upon how the distribution is grouped. Be-
cause the midpoints of the class intervals and not each observation in the distribution are
used to calculate the statistics that describe the grouped frequency distribution, these sta-
tistics will be less precise.

MULTIPLE CHOICE

11.
13.
15.
17.
19.
21.

© N g w Pk

63.3 [(60 X .67) + (70 X .30)] = 63.3; or [(60 X 40) = (70 X 20)]/2 = 63.3
25 (50 — 25 = 25)

6(10.5 — 4.5)

75

o

between 9.5 days and 14.5 days
19.5 days
14.5 days
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mode

25 (5% = 25)

mode—most frequently occurring observation
103
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PROBLEMS

1. Review the data in Tables 4-A-1 and 4-A-2 and answer the questions that follow.
Use an electronic spreadsheet to assist you in preparing the answers.

Table 4-A-1 Male Deaths Due to Leukemia (ICD-9-CM Codes 200.0-200.9)
in the state of Ohio, 1998

Leukemia
Age Deaths
Group in Men p Cum. p M f(M)
5-14 16 0.012 0.012 9.5 152.00
15-24 20 0.015 0.026 19.5 390.00
25-34 27 0.020 0.046 29.5 796.50
35-44 63 0.046 0.092 39.5 2,488.50
45-54 118 0.086 0.178 49.5 5,841.00
55-64 194 0.142 0.320 59.5 11,543.00
65-74 388 0.284 0.604 69.5 26,966.00
75-84 418 0.306 0.909 79.5 33,231.00
85+ 124 0.091 1.000 89.5 11,098.00
Total 1,368 1.000 92,506.00

Source: United States Department of Health and Human Services, Centers for Disease Control
and Prevention (CDC), CDC Wonder on-line database, wonder.cdc.gov.

Mean 67.6
Crude Mode 79.5
Crude Median 69.5

Table 4-A-2 Female Deaths Due to Leukemia (ICD-9-CM Codes 200.0-
200.9) in the state of Ohio, 1998

Leukemia
Age Deaths
Group in Women p Cum. p M f(M)
5-14 6 0.005 0.006 9.5 57.00
15-24 10 0.008 0.013 19.5 195.00
25-34 9 0.008 0.021 29.5 265.50
35-44 26 0.022 0.043 39.5 1,027.00
45-54 61 0.051 0.094 49.5 3,019.50
55-64 132 0.110 0.204 59.5 7,854.00
65-74 296 0.247 0.451 69.5 20.572.00
75-84 463 0.387 0.838 79.5 36,808.50
85+ 194 0.162 1.000 89.5 17,363.00
Total 1,197 1.000 87,161.50

Source: United States Department of Health and Human Services, Centers for Disease Control
and Prevention (CDC), CDC Wonder on-line database, wonder.cdc.gov.
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Mean 72.82
Crude Mode 79.5
Crude Median 79.5

a. What is the mean age of death for men? For women?
The mean age of death for men is 67.6 years (92,506/1,368); the mean age for women
is 72.8 years (87,161.5/1,197).

b. What are the crude modes and median ages of death for men? For women?
The crude mode for men is 79.5 years; the crude mode for women is 79.5 years. (The
midpoints of the most frequently occurring intervals.)

The crude median for men is 69.5 years; the crude median for women is 79.5 years.
c. What are the refined mode and the refined median for men? For women?
The refined mode for men:
Mode = L + [W(fmo — fo)l/[fmo — o) + (fmo — fa)]
= 745 + [10(418 — 388)]/(418 — 388) + (418 — 124)
= 74.5 + (300/324)
=745+ 9
=75.4

The refined median for men:

Mdn = L + w(1/2n — ¢)/fndn
= 64.5 + [10(684 — 438)]/388
= 64.5 + [10(246)/388
=545+ 6.3
= 70.8

The refined mode for women:

Mode = L + [W(fmo - fb)]/[fmo - fb) + (fmo - fa)]
= 745 + [10(463 — 296)]/(463 — 296) + (463 — 194)
= 74.5 + (1670/436)
=745+ 3.8
= 78.3

The refined median for women:

Mdn = L + w(1/2n — ¢)/fan
= 74.5 + [10(598.5 — 540)]/463
= 74.5 + [10(58.5)/463
=745+ 13
=758
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d. Compare and contrast the crude and refined results for each group. Explain any

disparities that may exist.

The crude median for men (69.5) is similar to the refined median (70.8). The crude
mode for men (79.5), however, is somewhat higher than the refined mode (75.4). This
is because there are more observations in the interval that falls below the interval that
containing the mode than the interval that falls above the interval containing the
mode, 388 and 124 respectively. The mode is pulled in the direction of the interval
that contains more observations.

The crude median for women (79.5) is somewhat higher than the refined median
(75.8). A greater proportion of deaths for women occur before age 74.5 than after age
84.5; thus the median is being pulled in the direction of the lesser age. This also bet-
ter matches the mean age, which is 72.8. The crude mode for women (79.5) is not
much different from the refined mode (78.3).

In analyzing the results of your data for men and women, what conclusions can
you draw?

Since we do not have information regarding age at diagnosis and/or survival times, we
cannot say that women live longer with the disease than men. We can only conclude
that the average age of death due to leukemia is higher for women, 72.8, than the av-
erage age for men, 67.6. For both data sets, the median better represents the most typ-
ical age at death because the mean is influenced by extreme values.

3. The lengths of stay for a group of patients discharged DRG 127 are presented in Ex-
hibit 4-A-2.
a. Use statistical software to calculate the mean, median, mode, variance, and stan-

dard deviation for the ungrouped frequency distribution and to prepare a fre-
quency table.

Statistics

LOS
N Valid 61

Missing 0
Mean 6.31
Median 4.00
Mode 3
Std. Deviation 6.220

Variance 38.685
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LOS
Frequency Percent Valid Percent Cumulative Percent

Valid 1 6 9.8 9.8 9.8
2 6 9.8 9.8 19.7

3 16 26.2 26.2 45.9

4 5 8.2 8.2 541

5 5 8.2 8.2 62.3

6 4 6.6 6.6 68.9

7 1 1.6 1.6 70.5

8 4 6.6 6.6 77.0

10 4 6.6 6.6 83.6

11 3 4.9 4.9 88.5

13 1 1.6 1.6 90.2

14 1 1.6 1.6 91.8

15 1 1.6 1.6 93.4

16 1 1.6 1.6 95.1

17 1 1.6 1.6 96.7

27 1 1.6 1.6 98.4

36 1 1.6 1.6 100.0

Total 61 100.0 100.0

b. Group LOS into class intervals. Prepare a table that displays the frequencies for
each class interval, the cumulative frequency, the relative proportion, and the cu-
mulative percent.

To determine the number of class intervals needed:

K =1+ 3.3log (n)
=1+ 3.3 log (61)
=1+ 3.3(1.785)
=1+5.89

= 6.89 or 7 class intervals (eight class intervals were used in order to
cover the entire distribution)

To determine the width of the class intervals:

W = (max — min)/k
= (36 — 1)/7
= 5 (width of the class intervals is 5)
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Class Interval f cf rel f Cum %
1-5 38 38 0.623 0.623
6-10 13 51 0.213 0.836

11-15 6 57 0.098 0.934

16-20 2 59 0.033 0.967

21-25 0 59 0.000 0.967

26-30 1 60 0.016 0.984

31-35 0 60 0.000 0.984

36-40 1 61 0.016 1.000
61 1.000

Class Interval f M m f(MP)
1-5 38 3 114 342
6-10 13 8 104 832

11-15 6 13 78 1,014
16-20 2 18 36 648
21-25 0 23 0 0
26-30 1 28 28 784
31-35 0 33 0 0
36-40 1 38 38 1,444

61 398 5,064

c. Compute the mean, median, mode, variance, and standard deviation for the
grouped data.

X = 398/61
=6.5
Crude mode = 3
Crude median = 3

Re finedMode = L + [W(fo — fo)/[fro — o) + (fmo — fo)]
= 0.5 + [5(38 — 0)]/(38 — 0) + (38 — 13)
=05 + (190/63)
=05+ 3.0
=35

Re finedMdn = L + w(1/2n — ¢)/fndn
= 0.5 + [5(30.5 — 0)/38
= 0.5 + [5(30.5)/38
=05+ 4.0
=45
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Variance and standard deviation:

Sx2=3fM2) =D (fM)%n

= 5,064 — (398)%/61
= 5,064 — 2,596.79
= 2,467.21

§? = Elen -1

= 2,467.21/61 — 1

=41.1

s=V Elen -1
= V411
=64

d. Compare the results of the grouped and ungrouped frequency distributions.

Ungrouped Grouped (Raw) Grouped (Refined)
Mean 6.31 6.5 6.5
Median 4 3 4.5
Mode 3 3 3.5
Variance 38.7 411
S.D. 6.2 6.4
CHAPTER 5

KNOWLEDGE QUESTIONS

1.

Define the key terms listed at the beginning of this chapter.

See glossary (Appendix A)

deviate?

357

. What is the difference between the standard deviation and the standard normal

The standard deviation is a measure of variation that is used to describe the number of
units that an observation in a normal distribution is from the mean. The standard normal
deviate is actually a z value in the standard normal distribution but has the same inter-
pretation as the standard deviation. A standard normal deviate is the number of standard

deviation units that an observed value lies away from the population mean, .

. You have been analyzing hospital discharges from DRG 15, Transient Ischemic At-

tack and Precerebral Occlusions. The average length of stay (ALOS) for patients
discharged from DRG 15 is 2.2 days. The national length of stay for DRG 15 is 4.1
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days. You are interested in determining whether the hospital’s length of stay for
DRG 15 is significantly different from the national ALOS.
a. State the null and alternative hypotheses.

Ho: 1 = 2
Hal b1 # po
b. Set the alpha level.
a = .05

7. Explain the differences between the alpha level and the p value.
The alpha level or level of significance is set in advance of conducting the statistical test.
The alpha level is the level at which we will reject the null hypothesis. The alpha level
also states the probability of making a type | error. The p value is obtained as a result of
conducting the statistical test. The p value tells us how rare the result of the statistical test
actually is. If the p value is less than or equal to the alpha level we reject the null
hypothesis.

9. The mean length of stay for patients discharged from DRG 005, Extracranial Vas-
cular Procedures, is 3.33. The standard deviation for the group is 3.18, and the num-
ber of patients discharged is 21. Calculate the 95% confidence interval for the mean
length of stay.

Standard error of the mean (S.E.) = s/Vn
3.18/V21
= 3.18/4.58

0.69

Clgs = X * 1.96(sg)
= 3.33 = 1.96(0.69)
=333+ 135
= 1.98, 4.68

MULTIPLE CHOICE

1. a. =1 o of the mean
3. d. all of the above
5. b 16%

7. c. positively skewed
9. b. 10 and 30
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13.
15.
17.
19.
21.
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aandb

rejected 5% of the time when it is true
accept the null hypothesis when it is false
all of the above

55 men and 45 women

two-stage random sampling

PROBLEMS

359

1. Review the data on length of stay that appear in Table 5-A-2 to answer the questions

below.

Table 5-A-2 Critical Care Hospital, Length of
Stay of Patients by Sex, DRG 127, Heart Fail-

ure and Shock

LOS Days Female Male Total

1 1 5 6

2 1 5 6

3 3 13 16

4 4 1 5

5 0 5 5

6 3 1 4

7 0 1 1

8 2 2 4

10 1 3 4

11 1 2 3

13 1 0 1

14 0 1 1

15 1 0 1

16 0 1 1

17 0 1 1

27 1 0 1

36 1 0 1
Total 20 4 61
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Using a microcomputer statistical package, calculate the average length of stay
for the entire group, for men, and for women.

LOS

Gender Mean N Std. Deviation
Female 8.70 20 8.761
Male 5.15 41 4.163
Total 6.31 61 6.220

You are interested in determining if there is a difference in the average length of
stay by sex. State the null and alternative hypotheses; state the a priori alpha
level.

Ho: 1 = w2
Hal 1 # o
a = .05

Calculate the standard error of the mean length of stay for the entire group, for
men, and for women.

Referring to the SPSS output below, the mean length of stay is 6.3 for the entire group,
5.2 for men, and 8.7 for women.

Calculate the 95% confidence interval for length of stay for the entire group, for
men, and for women.

Referring to the SPSS output below, the 95% confidence intervals for each group are:

Group 95% Confidence Interval

Entire Group 4.72 t0 7.90

Men 3.83 t0 6.46

Women 4.60 to 12.8
LOS Female Male Total
N 20 N | 61
Mean 8.70 5.15 6.31
Standard Deviation 8.761 4163 6.220
Standard Error 1.959 .650 .796
Lower bound 95% CI 4.60 3.83 4.72
Upper bound 95% CI 12.80 6.46 7.90
Minimum 1 1 1

Maximum 36 17 36
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CHAPTER 6

KNOWLEDGE QUESTIONS

1.

Define the key terms listed at the beginning of this chapter.
See glossary (Appendix A).

. Describe situations in which we would use one-tailed tests; describe situations in

which we would use two-tailed tests.

We use a one-tailed test when we are interested in determining whether one population
mean is significantly greater or less than another population mean. We use a two-tailed
test when we are interested in determining whether two population means are signifi-
cantly different from each other regardless of direction.

. In hypothesis testing, what is meant by the term effect?

An effect is a change in one variable that may be due to another variable. The variable
that displays the effect is referred to as the dependent variable. The variable considered
to be responsible for the variability in the dependent variable is referred to as the inde-
pendent variable.

MULTIPLE CHOICE

. one-tailed test

. reject the Hy at a = .05 and reject the Hg at a = .01

1. b
3. b. non-directional
5.d
7. b
9

. variance

.a. 99

PROBLEMS

1.

As an HIM DRG analyst, you are interested in comparing the mean length of stay
(LOS) for Critical Care Hospital and the national mean for DRG 002, Craniotomy,
Age Greater Than 17 without CC. The hospital mean LOS is 4.17, and the standard
deviation is 2.57. The national average LOS for DRG 005 is 5.2 days; the hypothet-
ical standard deviation is 2.56. The summary data for Critical Care Hospital appear
in Table 6-A-1 and Exhibit 6-A-1.

a. State the null and alternative hypotheses and the a priori alpha level.

Ho: 1 = p2
Hal 1 # po
a = .05
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b. Calculate the difference between the hospital mean and the national mean using

the one sample t test. What is the number of degrees of freedom? What is the re-
sultant t statistic? Is it statistically significant?
The SPSS output for the one sample t test:

One-Sample Statistics

N Mean Std. Deviation Std. Error Mean

LOS 23 417 2.570 .536
One-Sample Test

Test Value = 5.2

95% Confidence
Interval of
the Difference

Mean
t df Sig. (2-tailed) Difference Lower Upper
LOS -1.915 22 .069 —-1.026 —-2.14 .09

. What are your conclusions?

The calculated value of t is —1.915, df = 22, p = 0.069. The calculated value of t is
not statistically significant; we therefore conclude that it appears that the ALOS for
DRG 002 for Critical Care Hospital is not significantly different from the national
ALOS for DRG 002.
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3. You have been monitoring the lengths of stay for two of your physicians who dis-
charge the most patients from DRG 410, Chemotherapy without Acute Leukemia as
a Secondary Diagnosis. The relevant statistics appear in Tables 6-A-4 and 6-A-5.
You specifically want to know if the observed difference in the lengths of stay for
physicians 1460 and 8210 is statistically significant.

Table 6-A-4 Frequency Distribution of
Length of Stay by Physician, DRG 410, in 2004
at Critical Care Hospital (SPSS Output)

LOS * Physician Crosstabulation

Physician
1460 8210 Total

LOS 2 13 21 34
3 1 1 2

4 1 0 1

5 1 1 2

13 1 0 1

14 0 1 1

15 1 0 1

23 1 0 1

Total 19 24 43

Table 6-A-5 Mean and Standard Deviation
for Length of Stay by Physician, DRG 410, in
2004 at Critical Care Hospital (SPSS Output)

Report
Std.
Physician Mean N Deviation
1460 4.68 19 5.812
8210 2.67 24 2.496
Total 3.56 43 4.350

a. State the null and alternative hypotheses and the a priori alpha level.

Ho: w1 = p2
Hal 1 # po2
a = .05
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b. Use the t test for two independent sample means to determine if the observed dif-

ference between the two means is statistically significant. What are the number
of degrees of freedom, the resultant t statistic, and the significance level?

Group Statistics

LOS
Physician
1460 8210
N 19 24
Mean 4.68 2.67
Std. Deviation 5.812 2.496
Std. Error Mean 1.333 .510

Independent Samples Test

LOS
Equal variances Equal variances
assumed not assumed
Levene’s Test for F 7.743
Equality of Variances Sig. .008
t-test for Equality t 1.535 1.413
of Means df 4 23.253
Sig. (2-tailed) 133 A7
Mean Difference 2.018 2.018
Std. Error Difference 1.315 1.427
95% Confidence Interval Lower —.637 —-.934
of the Difference Upper 4.673 4.969

Since the hypothesis is one of inequality, we conduct a two-tailed t-test. The calcu-
lated t is 1.535, the degrees of freedom is 41 (43 — 2), p = .008. The calculated value
of t is statistically significant.

What are your conclusions?

We reject the null hypothesis. It appears that the observed difference in the average
lengths of stay is statistically significant.

CHAPTER 7

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.

See glossary (Appendix A).
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3. To conduct the ANOVA procedure, the dependent variable must fall upon which
scale of measurement? The grouping variable or independent variable falls upon
which scale of measurement?

For the ANOVA procedure, the dependent variable must be continuous; it must fall on ei-
ther the ratio or the interval scale of measurement. The independent or grouping variable
is discrete; it must fall on the nominal scale of measurement.

5. What is the purpose of conducting post hoc procedures?
When we are using ANOVA to compare three or more group means, a significant F ra-
tio does not tell us which of the group means are significantly different from each other.
We conduct post hoc procedures to determine which group means differ. All or some of
the group means may be significantly different from each other.

MULTIPLE CHOICE

1. c. one-way ANOVA
3. a 34

5. d. all of the above
7.d. aandc

9.d aandb

PROBLEMS

1. You have been analyzing hospital discharges from DRG 14, Intracranial Hemor-
rhage and Stroke with Infarction. You want to know if there is a difference in the av-
erage age of men and women discharged from DRG 14. The frequency distribution
for discharges by sex appears in Table 7-A-1. You have decided to use the ANOVA
procedure to calculate your results.
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Table 7-A-1 Frequency Distribution of Age
at Discharge by Gender, DRG 14, in 2004 at
Critical Care Hospital (SPSS Output)

Age * Gender Crosstabulation

Gender

Female Male Total

Age 22
23
26
39
44
46
47
49
50
52
55
56
57
57
57
58
58
60
60
64
68
68
70
70
71
71
72
72
73
75
76
77
77
78
83
84
86
86

a-=--000 A= -L2000~r0000~--r000~-=r00~+2000—2=20--0-=-000
WOO - 4 4000 == ad0—=Aadada00—-A—"Aa00-"—-A40-"2a4d4a00—-0-20=-=aa
00 = = = = ol b e e el e e e el e b e e

Total

Y
N
W
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a. State the null and alternative hypotheses and the alpha level that you will use.

Ho: 1 = w2
Hal p1 # o
a = .05

b. What is the mean age for men? What is the mean age for women?

Descriptives
Age

Gender Mean N Std. Deviation

Female 64.47 15 14.721
Male 59.57 23 17.758
Total 61.50 38 16.595

The mean age for women is 64.5, and the mean age for men is 59.6.

c. What is the calculated value of F? Is it statistically significant?

ANOVA Table

Sum of Squares df Mean Square F Sig.

Age * Gender Between Groups (Combined) 218.114 1 218.114 .787 .381
Within Groups 9971.386 36  276.983
Total 10189.500 37

The calculated value of F is .787, df = 1, 36, p = .381. The calculated value of F is
not statistically significant.

d. What is your conclusion?
We fail to reject the null hypothesis. It appears that the observed difference between
the mean age for men and women is not statistically significant.
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3. Physicians 2170 and 8060 have the most patients discharged from DRG 14. You want
to know if there is a difference in the average age and length of stay of patients of
these two physicians. The frequency distribution for age and length of stay for these
two physicians appears in Tables 7-A-3 and 7-A-4. You have decided to use the
ANOVA procedure to calculate your results.

Table 7-A-3 Frequency Distribution of Age at
Discharge, DRG 14, Physicians 2170 and
8060, in 2004 at Critical Care Hospital (SPSS
Output)

Age * Physician Crosstabulation
Physician

2170 8060 Total

Age 26
44
46
50
52
56
57
57
57
68
68
70
75
76
77
84
86

OO -0 =2 =2 a0 2000 - =2=a0—=-0
o--o-~~r0c0O0O--O0O=-=2000—-0=
[ S T G N S (A U A (T WS AT G QU U (R W G Y

Total

-



APPENDIX D ANSWERS AND SOLUTIONS

Table 7-A-4 Frequency Distribution of
Length of Stay, Physicians 2170 and 8060,
DRG 14, in 2004 at Critical Care Hospital

(SPSS Output)

LOS * Physician Crosstabulation

Physician
2170 8060 Total

LOS 2 3 1 4
3 3 7

5 1 1 2

6 0 1 1

7 1 0 1

12 0 2 2

Total 9 8 17

369

a. State the null and alternative hypotheses and the alpha level that you will use.
The null and alternative hypotheses for testing the differences between the means for

both age and length of stay is:

Ho: 1 = 2
Hal 1 # po2
a = .05

b. What is the average age for patients of physician 2170? What is the average age

of patients for physician 80607?

Report
Age
Physician  Mean N Std. Deviation
2170 63.89 9 13.788
8060 59.25 8 18.530
Total 61.71 17 15.842

The average age of patients of physician 2170 is 63.9; the average age of patients of

physician 8060 is 59.3.
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c. What is the average length of stay for patients of physician 2170? What is the av-
erage length of patients for physician 80607

LOS

Physician  Mean N Std. Deviation

2170 3.33 9 1.658
8060 5.75 8 4.062
Total 4.47 17 3.184

The average length of stay for patients of physician 2170 is 3.3; the average length of
patients for patients of physician 8060 is 5.75.

d. What is the calculated value of F for each variable? Are they statistically signif-

icant?
ANOVA Table
Sum of Squares df Mean Square F  Sig.
Age * Physician Between Groups (Combined) 91.141 1 91.141 .348 .564
Within Groups 3924.389 15 261.626
Total 4015.529 16

For age, the calculated F is .348, df = 1, 15, p= .564. The calculated F for age is not
statistically significant.

ANOVA Table

Sum of Squares df Mean Square F  Sig.

LOS * Physician Between Groups (Combined) 24.735 1 24.735 2.698 .121
Within Groups 137.500 15 9.167
Total 162.235 16

For ALOS, the calculated F is 2.698, df = 1, 15, p = .121. The calculated F for ALOS
is not statistically significant.

e. What is your conclusion? What factors may be influencing your results?
We fail to reject the null hypotheses. It appears that the observed difference between
the mean age and ALOS for physicians 2170 and 8060 are not statistically significant.
The sample size may not be large enough to detect a difference that is statistically
significant.



ApPPENDIX D ANSWERS AND SoLuTions 371

CHAPTER 8

KNOWLEDGE QUESTIONS

1.

Define the key terms listed at the beginning of this chapter.
See Glossary (Appendix A).

. What is the range for the Pearson r? How is the Pearson r statistic interpreted? Ex-

plain the concepts of positive linear relationship and negative linear relationship.
The range of the Pearson r is —1.0 to +1.0. If the Pearson r correlation coefficient is ei-
ther +1.0 or —1.0, the relationship between the two variables is perfect; if the Pearson r
is equal to zero, there is no relationship between the two variables. If the relationship be-
tween the two variables is positive, as one variable increases, so does the second. If the
relationship is negative, as one variable increases, the second variable decreases.

. What is the interpretation of the regression line in a scatter diagram?

The regression line is an indicator of the strength of the relationship between two linear
variables. The steeper the slope of the regression line, the stronger the relationship be-
tween the two variables. If the slope of the regression line is in an upward direction from
left to right, the relationship between the two variables is positive. If the slope of the re-
gression line is downward from left to right, the relationship between the two variables
is negative. If the regression line is flat, there is not relationship between the two
variables.

MULTIPLE CHOICE

. d. all of the above
. C. there is a perfect positive relationship between x and y
.c 00

. d. we have made an error in our calculations

PROBLEMS

1. You are studying DRG 105, Cardiac Valve Procedures and Other Major Cardiotho-

racic Procedures without Cardiac Catheterization, for Critical Care Hospital. Using
the data provided in Table 8—A-1, calculate the Pearson r for each of the following
pairs:

e Age and length of stay

 Total charges and length of stay*

» Age and total charges
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a. State the null and alternative hypotheses and alpha level for each.

Table 8-A-1 Case Summaries for DRG 105, Cardiac Valve Procedures and Other

Major Cardiothoracic Procedures without Cardiac Catheterization

Gender Age LOS Charges Payor

1 Female 47 20 $91,683 Medicaid

2 Female 75 43 $93,708 Medicare

3 Female 84 7 $21,446 Medicare

4 Female 50 13 $37,797 Medicare

5 Male 77 14 $54,364 Medicare

6 Male 57 4 $17,626 Medicare

7 Male 73 4 $12,832 Medicare

8 Female 56 1 $36,153 Medicaid

9 Male 69 1 $14,907 Medicaid
10 Female 81 23 $104,148 Medicare
11 Male 21 5 $21,423 Medicaid
12 Female 37 5 $24,971 Medicaid
13 Female 69 4 $17,022 Medicare
14 Female 89 17 $50,652 Medicare
15 Male 28 35 $186,496 Medicaid
16 Male 47 6 $24,441 Medicaid
17 Male 87 11 $35,349 Medicare
18 Female 85 5 $22,155 Medicare
19 Male 56 5 $24,455 Managed Care
20 Male 45 11 $36,401 Medicaid
21 Male 82 6 $25,783 Medicare
22 Female 65 10 $37,055 Managed Care
23 Male 67 4 $19,236 Medicare
24 Male 59 23 $60,132 Other
25 Female 67 7 $35,777 Medicare
26 Male 53 4 $19,972 Managed Care
27 Male 71 7 $25,409 Medicare
28 Female 79 6 $281,140 Medicare
29 Male 63 1 $41,283 Medicaid
30 Male 53 19 $71,439 Medicaid
31 Female 75 9 $33,735 Medicare
32 Female 68 9 $37,830 Gov Mngd Care
33 Male 37 4 $22,311 Medicaid

Total 33 33 33 33 33
Ho:p = 0
HA: p # 0

a = .05
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b. Construct a scatter diagram with regression line for each.

Charges

Scatter Plot Age and Length of Stay

50—
40—
O
30—
(%]
9 o
20— o o
O
10— “o _© a
o O [®)
(e} (e}
S 8 0% coo ©9°0
0— o o o
I I I I I [ I I
20 30 40 50 60 70 80 90
Age
Scatter Plot Length of Stay and Total Charges
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Scatter Plot Age and Total Charges

300,000

250,000

200,000

150,000

Charges

100,000 o ©

50,000

Age

For the variables age and length of stay, and age and total charges, the regression lines
in the scatter plots are flat indication no relationship. For length of stay and total
charges, the regression line originates in the lower left and moves to the upper right,
indicating a positive linear relationship. The Pearson r is calculated for each; the re-

sults are:
Descriptive Statistics
Mean Std. Deviation N
Age 62.79 17.315 33
LOS 10.39 9.585 33
Charges 49670.7715 54114.32276 33
Correlations
Age LOS Charges
Age Pearson Correlation 1 —-.024 .009
Sig. (2-tailed) .896 .961
N 33 33 33
LOS Pearson Correlation —.024 1 .480(**)
Sig. (2-tailed) .896 .005
N 33 33 33
Charges Pearson Correlation .009 .480(**) 1
Sig. (2-tailed) .961 .005
N 33 33 33

** Correlation is significant at the 0.01 level (2-tailed).
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c. State your conclusions for each.
For age and length of stay, r = —.024, and p = .896. We therefore fail to reject the
null hypothesis and conclude that it appears that the relationship between age and
length of stay is not statistically significant.

For age and total charges, r = —.009, and p = .961. We therefore fail to reject the null
hypothesis and conclude that it appears that the relationship between age and total
charges is not statistically significant.

For length of stay and total charges, r = —.48, and p = .005. We therefore reject the
null hypothesis and conclude that it appears that the relationship between length of
stay and total charges is statistically significant.

CHAPTER 9

KNOWLEDGE QUESTIONS

1. Define the key terms listed at the beginning of this chapter.
See glossary (Appendix A).

3. Describe the circumstances under which it would be appropriate to use the chi-
square test.
We can use the chi-square test of independence when we are interested in determining if
two variables, such as age and sex, are related. We can use the chi-square test to compare
frequencies on a variable from two or more independent populations. We can use the chi-
square goodness-of-fit test when we want to compare an observed frequency distribution
to a theoretical frequency distribution. And, we can use McNemar’s chi square when we
want to analyze frequencies for paired samples.

MULTIPLE CHOICE

1. e candd
3. a. observed frequencies are similar to the expected frequencies
5 b 18
7. ¢ 30
9.

a. reject the null hypothesis
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PROBLEMS

1. You are assisting Dr. Hartman in studying the number of deaths due to acute my-
ocardial infarctions (AMIs). Dr. Hartman is particularly interested in knowing if
more men died from AMIs than women. To answer this question, you review dis-
charges by sex for DRG123, Circulatory Disorders with AMI, Expired. Use the non-
parametric procedure for chi-square to determine if there is an association between
sex and deaths due to AMI at Critical Care Hospital. A frequency distribution of dis-
charges by sex and age from DRG 123 appears in Table 9-A-1.

Table 9-A-1 Frequency Distribution of Discharges by Age
and Gender, DRG 123 (SPSS Output)

Age * Gender Crosstabulation

Gender
Female Male Total
Age 49 0 1 1
50 0 1 1
61 0 1 1
66 0 1 1
75 1 0 1
76 0 1 1
77 0 1 1
88 1 0 1
88 0 1 1
Total 2 7 9
a. State the null and alternative hypotheses.
Ho: p1 = P2
Hal p1 # P2
b. State the alpha level.
o = .05
c. What is the result of the chi-square test?
Gender
Observed N Expected N Residual
Female 2 4.5 —-2.5
Male 7 4.5 2.5

Total 9
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Test Statistics

Gender
Chi-Square(*) 2.778
df 1
Asymp. Sig. .096

* 2 cells (100.0%) have expected frequen-
cies less than 5. The minimum expected
cell frequency is 4.5.

d. State your conclusions.
x? = 2.778, df = 1, p = .096; We fail to reject the null hypothesis and conclude that
it appears there is no difference in the proportion of males and females who expired
as a result of an acute myocardial infarction. The result of the chi square test is not
statistically significant. The results should be viewed with caution because of the
number of cells that have expected frequency counts of less than five.

CHAPTER 10

KNOWLEDGE QUESTIONS
1. Define the key terms listed at the beginning of this chapter.
See glossary (Appendix A).

3. Under what conditions is it appropriate to use the sign test?
The sign test is analogous to the t-test procedure for a single sample. It is used when the
sample size is small and the underlying population distribution is not normal.

5. Under what conditions is it appropriate to use the Mann-Whitney Wilcoxon test?
The Mann-Whitney Wilcoxon test is used as an alternative to the t-test for two indepen-
dent samples when the assumption for the t-test are violated. The Mann-Whitney-
Wilcoxon test compares the medians of two independent samples.

MULTIPLE CHOICE

1. e. all of the above
3. d. all of the above
5. d. analysis of variance (ANOVA)
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PROBLEMS

1. You are analyzing length of stay by physician for DRG 124, Circulatory Disorders,
Except Acute Myocardial Infarction with Cardiac Catheterization and Complex Di-
agnosis. You are focusing on physicians 1630, 1830, and 3220. The lengths of stay for
the patients of these three physicians appear in Table 10-A-1. Since the sample size
for each physician is small, you decide to conduct the Kruskal-Wallis test to com-
pare the mean lengths of stay.

Table 10-A-1 LOS Physician Crosstabulation (SPSS Output)

Count Physician
2050 2210 8290 Total
LOS 1 1 2 2 5
2 7 4 2 13
3 1 2 1 4
4 4 2 2 8
5 0 1 0 1
6 0 1 2 3
8 0 1 0 1
Total 13 13 9 35
a. State the null and alternative hypotheses.
HO: Ml = M2 = M3
Ha: My # M, # Mgy
b. State the alpha level.
a = .05
c. What is the result of the Kruskal-Wallis test?
Ranks
Physician N Mean Rank
LOS 2050 13 16.42
2210 13 19.00
8290 9 18.83

Total 35
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Test Statistics(*,")

LOS
Chi-Square 527
df 2
Asymp. Sig. .768

* Kruskal Wallis Test
T Grouping Variable: Physician

d. State your conclusions.
We fail to reject the null hypothesis. It appears that there is no significant difference
in the average lengths of stay for the three physicians.

. Review Exhibits 10-A-1 and 10-A-2 for discharges from DRG 127, Heart Failure
and Shock. Use the Mann-Whitney U test to determine if there is a difference in age
by sex and length of stay by sex for discharges from DRG 127.

a. State the null and alternative hypotheses.

HO: MY = MY
Ha: My # My

b. State the alpha level.
a = .05
¢. What are the results of the Mann-Whitney U tests?

Mann-Whitney U for age and sex:

Ranks
Gender N Mean Rank Sum of Ranks
Age Female 20 35.28 705.50
Male N 28.91 1185.50
Total 61

Test Statistics(*)

Age
Mann-Whitney U 324.500
Wilcoxon W 1185.500
Z -1.314
Asymp. Sig. (2-tailed) .189

* Grouping Variable: Gender
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Mann-Whitney U for length of stay and sex:
Ranks
Gender N Mean Rank Sum of Ranks
LOS Female 20 37.33 746.50
Male 41 27.91 1144.50
Total 61
Test Statistics(*)
LOS
Mann-Whitney U 283.500
Wilcoxon W 1144.500
Z —1.965
Asymp. Sig. (2-tailed) .049
* Grouping Variable: Gender
d. State your conclusions.
For age and sex, the Mann-Whitney U statistic is 1185.5. The calculated z is —1.314,
p = .189. We therefore fail to reject the null hypothesis and conclude that it appears
that observed difference in median age by sex is not statistically significant for pa-
tients discharged from DRG 127.
For length of stay and sex, the Mann-Whitney U statistic is 1144.5. The calculated z
is —1.965, p = .049. We therefore reject the null hypothesis and conclude that it ap-
pears that observed difference in median length of stay by sex is statistically signifi-
cant for patients discharged from DRG 127.
e. Use the ANOVA procedure to run the same analyses. Compare the ANOVA re-
sults with the Mann-Whitney U test results.
95% Confidence
Interval for Mean
Std. Lower Upper
N Mean Deviation Std. Error Bound Bound Minimum Maximum
Age Female 20 69.40 11.440 2.558 64.05 74.75 54 88
Male 41 63.71 15.202 2.374 58.91  68.51 37 87
Total 61 65.57 14.240 1.823 61.93  69.22 37 88
LOS Female 20 8.70 8.761 1.959 460 12.80 1 36
Male 41 515 4.163 .650 3.83 6.46 1 17

Total 61 6.31 6.220 .796 4.72 7.90 1 36
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ANOVA
Sum of Squares df  Mean Square F Sig.
Age Between Groups 435.630 1 435.630 2.191 144
Within Groups 11731.288 59 198.835
Total 12166.918 60
LOS Between Groups 169.760 1 169.760 4.656 .035
Within Groups 2151.322 59 36.463
Total 2321.082 60

The results are similar. For age and sex, F = 2.191, df = 1, 59, p = .144. We fail to
reject the null hypothesis and conclude that the observed difference in mean age for
men and women is not statistically significant for patients discharged from DRG 127.
For length of stay and sex, F = 4.656, df = 1, 59, p = .035. We reject the null hy-
pothesis and conclude that the observed difference in mean length of stay for men and
women is statistically significant for patients discharged from DRG 127.
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accuracy in measurement, 6872
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calculating sample size, 145-149
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variance and standard deviation, 100
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Kruskal-Wallis test, 291-295
Mann-Whitney Wilcoxon test, 287-291,
323-324
median, 89
parametric vs. nonparametric methods,
252
sign test, 279-284
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categories for nominal variables, 75
cause-specific death rates, 14
cells (tables), 42
censored patients, 26
central limit theorem, 134-136
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calculating with SPSS, 99-100
normal distributions, 126
charts, 44-59
chi-square tests, 253-269
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Fisher’s exact test, 261-263
goodness of fit, 264—-266
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Yates correction for continuity, 258
children mortality rates, 16-17
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SPSS
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line graphs, 54-57
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linear regression, 218-245
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F test (ANOVA), 229-231
hypothesis testing, 228
predicting cancer deaths from age
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(example), 237-245
standard error of the estimate, 226-228
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calculating, 213-218
Spearman rho rank correlation coefficient,
275-279
Cramer’s'V, 260-261
criterion-related validity, 70
critical region, 161
critical values for statistical significance
standard normal distributions, 161
t tests, 167
crude death rate, 6-9
age adjustments, 10-13
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D

data, confidence in, 66. See also measurement
data coding and interrater agreement, 73-74
data display. See graphical display of data
data groupings. See grouped data
data individuality, 95
data uniformity, 95
data validity, 68-72
death-free period, defined, 27
death rates. See mortality measures
degree of association
Pearson r correlation coefficient, 210-218,
319
calculating, 213-218
phi coefficient, 258-260
degrees of freedom (df), 166-167
ANOVA (analysis of variance), 191
contingency tables, 257
statistical tables, 313-325
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normal distributions, 126
measures of variability, 95-100
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variance
diagrams. See graphical display of data
dichotomous variables, 4-6
mean of, 93. See also mean
variance and standard deviation, 100
direct measurement, 66
direct standardization, 10-11
directional hypotheses. See one-tailed tests
disease frequency, 20-26
displaying data graphically. See graphical
display of data
distribution-free statistics, 252-253
distributions. See continuous variables;
frequency distributions

E

effects, defined, 162
error
controlling with adequate sample size,
145-149. See also sample size
data validity, 68—72
regression, 219-221
standard error of the estimate, 226-228
sampling error, 145
standard error of the mean, 136-138
type | error, 142, 145-149, 200
type Il error, 142, 200-202
exposed groups, defined, 20-21
exposure frequencies, 20-26. See also
morbidity measures
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F distribution, 188
table of critical values, 317
F ratio, 188-193
F test. See ANOVA (analysis of variance)
Fisher’s exact test, 261-263
frequency distributions, 2-3
binomial distribution, 280, 321-322
continuous. See continuous variables
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F distribution, 188, 317
grouped. See grouped data
measures of central tendency, 86-95
calculating with SPSS, 99-100
normal distributions, 126
measures of variability, 95-100
normal. See normal distributions
Student’s t distribution. See t tests
tables of, 40-44
frequency measures. See also specific measure
by name
of morbidity, 18-20
of mortality, 6-17
Kaplan-Meier survival analysis, 26-29
list of, 17
ratios, rates, and proportions, 4-6
relative (diseases), 20-26
frequency polygons, 54

G

gender-specific death rates, 13-14
gold standard of measurement, 70
goodness of fit (chi-square tests), 264—266
graphical display of data, 39-59
charts, 44-59
tables, 40-44
grouped bar charts, 48
grouped data, 48, 78, 100-113. See also
categorical data
central tendency measures, 104-107
chi-square tests for (McNemar tests),
266-268
percentiles and quartiles, 109-113
sign test, 279-284
variability measures, 107-109

H

histograms, 52-54
horizontal bar charts, 46
100% component bar charts, 50
hypothesis testing, 140-142
accepting when false (type Il error), 142,
200. See also sample size
statistical power analysis, 200-202
difference between two population means,
159-180
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hypothesis testing (Continued)
z test for comparing population means,
160-164
z test for comparing population
proportions, 164-166
linear regression, 228
rejecting when true (type I error), 142, 200
controlling with adequate sample size,
145-149
t tests, 166-179, 316
comparing independent sample means,
172-175
one-tailed t tests, 170-172
paired-sample t tests, 176-179
two-tailed t tests, 168-170

illness frequencies, 20-26. See also morbidity
measures

incidence rates, 18

independent-samples t tests, 172-175

indirect measurement, 66, 68—69

indirect standardization, 11-13

individuality of data, 95

infant mortality rates, 16-17

inference, 133

instruments of measurement. See measurement

internal consistency, 73

interrater agreement, 73-74

interval scales, 78, 252

intervals for grouped data, 101-102. See also
grouped data

K

Kaplan-Meier survival analysis, 26-29
kappa coefficient, 73-74
Kruskal-Wallis test, 291-295

table of critical values, 327
kurtosis, 128

L

levels of significance, 142

line graphs, 54-57

line of best fit (regression line), 219
slope of, 222

y-intercept, 227
linear regression, 218-245
confidence intervals, 227-228
examples of
predicting cancer deaths from age, 233-237
predicting total charges from age,
237-245
F test (ANOVA), 229-231
hypothesis testing, 228
standard error of the estimate, 226-228
location tests, 279-287
sign test, 279-284
Wilcoxon signed ranks test, 284-287

M

Mann-Whitney Wilcoxon test, 287-291
table of critical values, 323-324
maternal mortality rate, 15-16
McNemar tests, 266-268
mean, 90-95
average of squared deviations from. See
variance
comparing independent samples, 172-175
comparing multiple samples. See ANOVA
comparing samples from single population,
176-179
grouped data, 104-105
normal distributions, 126
standard error of (SE), 136-138
z test for comparing population means,
160-164
measurement, 65-79
central tendency measures, 86-95
calculating with SPSS, 99-100
normal distributions, 126
error and bias, 72-73. See also error
reliability, 72-74
scales of, 75-78
validity, sensitivity, and specificity, 68—72
variability measures, 95-100
measures of frequency. See frequency measures
median, 89-90
grouped data, 105-106
normal distributions, 126
metric variables, 77-78
minimum sample size, 145-149, 163
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grouped data, 106-107
normal distributions, 126
morbidity measures, 18-20
mortality measures, 6-17
Kaplan-Meier survival analysis, 26-29
list of, 17
multicollinearity, 243
multimodal distributions, 87
multiple regression models, 242-243

N

negative correlation, 210
negative skew, 127
neonatal mortality rates, 16
nominal scales and variables, 75
individuality, 95
mode of, 87-88
parametric vs. nonparametric methods, 252
polarization, 95
noncritical region, 161
nondirectional hypotheses. See two-tailed tests
nonparametric methods, 252-253, 275-295
Kruskal-Wallis test, 291-295
Mann-Whitney Wilcoxon test, 287-291
sign test, 279-284
Spearman rho rank correlation coefficient,
275-279
Wilcoxon signed ranks test, 284-287
nonprobability sampling, 139
normal distributions, 125-139
central limit theorem, 134-136
confidence intervals, 138-139
standard error of the mean, 136-138
table of critical values, 313-315
z distributions. See standard normal
distributions
notes in tables, 42
null hypotheses, 141-142
one- and two-tailed tests, 160, 165

0]

odds ratios (OR), 22-25
100% component bar charts, 50
one-sample t tests, 168-170
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one-tailed tests
for comparing population means, 160-164
for comparing population proportions,
164-166
one-tailed t tests, 170-172
paired-sample t tests, 176-179
one-variable bar charts, 45-47
one-variable tables, 42
OR (odds ratios), 22-25
ordinal (ordered) variables and scales, 77
Kruskal-Wallis test, 291-295
Mann-Whitney Wilcoxon test, 287-291,
323-324
median, 89. See also median
parametric vs. nonparametric methods,
252
sign test, 279-284
Spearman rho rank correlation coefficient,
275-279
Wilcoxon signed ranks test, 284-287
outliers, mean and, 91, 93-94

P

p values, 143-145
paired data. See grouped data
paired-sample t tests, 176-179
parametric statistics, 251-252
Pearson r correlation coefficient, 210-218. See
also linear regression

calculating, 213-218

table of critical values, 319
percentage distributions, 55-56, 76
percentile ranks, 110-112
percentiles, 109-113, 111-112
performance indicators, measuring, 66-67. See

also measurement

period data, 56. See also time variable
phi coefficient, 258—-260
pie charts, 50-52
pilot tests for proposed measures, 7072
plots. See graphical display of data
PMR (proportionate mortality ratio), 15
point data, 56. See also time variable
point estimates, 133
point prevalence rate, 18-20
polarization, 95
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population-based mortality measures, 6-17
Kaplan-Meier survival analysis, 26-29
list of, 17

population means. See mean

population parameters, 86

population proportions, comparing, 164166

populations, defined, 86

positive correlation, 210

positive skew, 127

post-hoc tests, 194, 197

postneonatal mortality rates, 16

power analysis, 200-202

predictive criterion-related validity, 70

predictive value, 70-72

prevalence rates, 18-20

probability sampling, 139

proportions, 4-5
PMR (proportionate mortality ratio), 15
of populations, comparing, 164-166

proxy measures. See indirect measurement

Q

Q statistic (Kruskal-Wallis test), 292-295, 327
quality of data. See accuracy of data
quartiles, 111-112

R

r. See Pearson r correlation coefficient
r?. See coefficient of determination
race-specific death rates, 13
range, 95-96
rates, 5-6. See also specific measure by name
of death. See mortality measures
of morbidity. See morbidity measures
ratio scales, 77
parametric vs. nonparametric methods, 252
ratios, 4
real limits of class intervals, 102
region of rejection, 161
regression line (line of best fit), 219
slope of, 222
y-intercept, 227
regression models. See linear regression;
multiple regression models
relative measures of disease frequency, 20-26

relative risk (RR), 20-22
odds ratio vs., 23-25
reliability, 72—-74
residuals with chi-square tests, 258
risk ratio. See relative risk
rows in tables, 40-44
RR (relative risk), 20-22
odds ratios (OR) vs., 23-25

S

S (sign statistic), 280-284
sample size, 70, 134, 145
beta error (type Il error), 142, 200. See also
sample size
statistical power analysis, 200-202
minimum required, calculating, 145-149
one-tailed tests, 163
standard error of the mean, 136
statistical power analysis, 200-202
sample statistics, 86
samples, defined, 86
sampling distributions, 133
central limit theorem, 134-136
sampling error, 145
sampling methods, 139-140
scales of measurement, 75-78
scatter diagrams, 58, 210-212
Scheffé test, 195, 197
SE (standard error of the mean), 136-138
sensitivity of measurement, 70-72
sex-specific death rates, 13-14
sign test, 279-284
significance testing. See statistical significance
simple random sampling, 140
size, sample. See sample size
skewness, 127
slope of regression line, 222
SMR (standard mortality ratio), 12-13
software for statistical calculations, 149. See
also SPSS
source information in tables, 42
sources of variation, 188-192
Spearman rho rank correlation coefficient,
275-279
specificity of measurement, 70-72



SPSS (Statistical Package for the Social
Sciences), 27-29, 149
ANOVA (analysis of variance), 193-194,
198-200, 229-231
chi-square goodness of fit, 265-266
chi-square tests, 260-261
Fisher’s exact test, 263
independent-samples t tests, 172, 174-175
Kruskal-Wallis test, 294-295
linear regression, 232
Mann-Whitney Wilcoxon test, 290-291,
323-324
McNemar tests, 268
measures of central tendency, 94-95, 99-100
measures of variability, 99-100
one-tailed t tests, 171-172
paired-sample t tests, 178-179
Pearson r correlation coefficient, 217-218
scatter diagrams, 213
sign test, 283, 285
Spearman rho rank correlation coefficient,
279
standardizing normal distributions,
129-133
two-tailed t tests, 169-170
Wilcoxon signed ranks test, 285-287
SSB (sum of squares between), 188-192
SSW (sum of squares within), 188-192
stability of data, 73
stacked bar charts, 48-49
standard deviation, 96-97
dichotomous data, 100
grouped data, 107-109
normal distributions, 126-127
standard error of the estimate, 226-228
standard error of the mean, 136
standard error of the estimate, 226-228
standard error of the mean, 136-138
standard mortality ratio (SMR), 12-13
standard normal deviate, 128
standard normal distributions (z distributions),
128-133
comparing population means, 160-164
comparing population proportions, 164-166
critical z score values, 314-315
t tests. See t tests
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standardization
direct, 10-11
indirect, 11-13
standardized residuals, 258
statistical inference, 133
statistical modeling, 257
Statistical Package for the Social Sciences. See
SPSS
statistical power, 200-202
statistical power analysis, 200-202
statistical significance, 140-142
chi-squares, 258
levels of significance (alpha level), 142
one- and two-tailed tests, 161
p values, 143-145
Spearman rho rank correlation coefficient,
277
t tests, 167
statistical software, 149. See also SPSS
statistical tables, 313-325
stratified random sampling, 140
stubs (tables), 42
Studentized range statistic. See Tukey HSD test
Student’s t distribution. See t tests
sum of squares between (SSB), 188-192
sum of squares within (SSW), 188-192
survival analysis, 26-29. See also mortality
measures
symmetric distributions, 126
systematic sampling, 140

T

t tests, 166-179
comparing independent sample means,
172-175
one-tailed t tests, 170-172
paired-sample t tests, 176-179
tables of critical values, 316, 318
two-tailed t tests, 168-170
table shells, 40
tables, 40-44
tests of significance. See statistical
significance
text alignment in tables, 41
three-dimensional bar charts, 46
three-variable tables, 43-44
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time variable, 7-8
point prevalence rate, 18-20
time-trend data, graphing, 56-57
timeliness, 75
titles for tables, 42
total sum of squares (TSS), 188-190
transformation of observations to z values,
129-133
trimmed mean, 93-95
TSS (total sum of squares), 188-190
Tukey HSD test, 195, 197
two-by-two contingency tables, 43
two-category variables. See dichotomous
variables
two-tailed tests
for comparing population means, 160-164
for comparing population proportions,
164-166
paired-sample t tests, 176-179
two-tailed t tests, 168-170
two-variable tables, 43-44
type | error, 142, 200
controlling with adequate sample size,
145-149
type 1l error, 142, 200. See also sample size
statistical power analysis, 200-202

U

unbiased data, 73
unexposed groups, defined, 20-21
uniformity of data, 95

\Y

validity of data, 68-72
variability measures, 95-98
calculating with SPSS, 99-100
variables, 3. See also frequency distributions
accuracy. See accuracy of data
affecting morbidity and mortality, 7
charts of, 44-59
confounding variables. See confounding
factors
continuous variables, 78
histograms, 52-54

line graphs, 54-57
scatter diagrams, 58, 210-212
correlation between. See correlation
dichotomous variables, 4-6
mean of, 93
variance and standard deviation, 100
effects, defined, 162
measurement. See measurement
nominal variables. See nominal scales and
variables
ordinal variables. See ordinal (ordered)
variables and scales
tables of, 40-44
for time. See time variable
variance, 96-97
analysis of (ANOVA), 187-202
linear regression, 229-231
more than two samples, 194-200
dichotomous data, 100
grouped data, 107-109
normal distributions, 126-127
variation, sources of, 188-192
vertical bar charts, 46

W

weighted mean, 92-93

Wilcoxon rank sum test, 287-291
Wilcoxon signed ranks test, 284-287
winsorized mean, 93

Y

y-intercept of regression line, 227
Yates correction for continuity, 258

z

z distributions, 128-133
comparing population means, 160-164
comparing population proportions, 164-166
t tests. See t tests

z scores, 128-129, 164, 313-315. See also

standard normal distributions

Z tests
comparing population means, 160-164
comparing population proportions, 164-166



